Complex patterns in particle aggregation models of biological formation

Theodore Kolokolnikov

Joint works with Hui Sun, James Von Brecht, David Uminsky, Andrea Bertozzi, Razvan Fetecau and Yanghong Huang

Dalhousie UCLA SFU
Introduction

- Animals often aggregate in groups
- Biologically, it can provide protection from predators; conserve heat, act without an apparent leader, enable collective behaviour
- Examples include bacteria, ants, fish, birds, bees....
Aggregation model

We consider a simple model of particle interaction,

\[
\frac{dx_j}{dt} = \frac{1}{N} \sum_{k=1, \ldots, N \atop k \neq j} F(|x_j - x_k|) \frac{x_j - x_k}{|x_j - x_k|}, \quad j = 1 \ldots N
\]

(1)

- Interaction force \(F(r) \) is of attractive-repelling type: the insects repel each other if they are too close, but attract each other at a distance.

- Note that acceleration effects are ignored as a first-order approximation.

- Mathematically \(F(r) \) is positive for small \(r \), but negative for large \(r \).
Commonly, a **Morse interaction force** is used:

\[F(r) = \exp(-r) - G \exp(-r/L); \quad G < 1, L > 1 \]

(2)

Under certain conditions on repulsion/attraction, the steady state typically consists of a bounded “particle cloud” whose diameter and is independent of \(N \) in the limit \(N \to \infty \). Then the continuum limit becomes

\[
\rho_t + \nabla \cdot (\rho v) = 0; \quad v(x) = \int_{\mathbb{R}^n} F(|x - y|) \frac{x - y}{|x - y|} \rho(y) dy.
\]

Questions

1. Describe the equilibrium cloud shape in the limit \(t \to \infty \)

2. What about dynamics?
Morse force, h-stable vs. catastrophic

- If $GL^{n+1} > 1$, the system is catastrophic: doubling N doubles the density but cloud volume is unchanged:

 $$F(r) = e^{-r} - 0.5e^{-r/2}$$

- If $GL^{n+1} < 1$, the system is h-stable: doubling N doubles the cloud volume: but density is unchanged:

 $$F(r) = e^{-r} - 0.5e^{-r/1.2}$$
Tanh-type force: \(F(r) = \tanh ((1 - r) a) + b \)
Part I: Ring-type steady states

- Seek steady state of the form $x_j = r \left(\cos \left(\frac{2\pi j}{N} \right), \sin \left(\frac{2\pi j}{N} \right) \right), \ j = 1 \ldots N$.

- In the limit $N \to \infty$ the radius of the ring must be the root of

$$I(r) := \int_0^{\frac{\pi}{2}} F(2r \sin \theta) \sin \theta d\theta = 0.$$ \hspace{1cm} (3)

- For Morse force $F(r) = \exp(-r) - G \exp(-r/L)$, such root exists whenever $GL^2 > 1$ [coincides with 1D catastrophic regime]

- For general repulsive-attractive force $F(r)$, a ring steady state exists if $F(r) \leq C < 0$ for all large r.

- Even if the ring steady-state exists, the time-dependent problem can be ill-posed!
Continuum limit for curve solutions

- If particles concentrate on a curve, in the limit $N \to \infty$ we obtain
 \[
 \rho_t = \rho \frac{\langle \dot{z}_\alpha, \dot{z}_\alpha t \rangle}{|\dot{z}_\alpha|^2}; \quad z_t = K \ast \rho
 \] \hspace{1cm} (4)

 where $z(\alpha; t)$ is a parametrization of the solution curve; $\rho(\alpha; t)$ is its density and
 \[
 K \ast \rho = \int F(|z(\alpha') - z(\alpha)|) \frac{z(\alpha') - z(\alpha)}{|z(\alpha') - z(\alpha)|} \rho(\alpha', t) dS(\alpha').
 \] \hspace{1cm} (5)

- Depending on $F(r)$ and initial conditions, the curve evolution may be **ill-defined!**
 - For example a circle can degenerate into an annulus, gaining a dimension.

- We used a Lagrange particle-based numerical method to resolve (4).
 - Agrees with direct simulation of the ODE system (1):
Local stability of a ring

• Linearize: $x_k = r_0 \exp \left(\frac{2\pi ik}{N} \right) (1 + \exp(t\lambda)\phi_k)$ where $\phi_k \ll 1$.

• Ring is stable of $\text{Re} (\lambda) \leq 0$ for all pair (λ, ϕ). There are three zero eigenvalues corresponding to rotation and translation invariance; all other eigenvalues come in pairs due to rotational invariance.

• λ is the eigenvalue of

$$M(m) := \begin{bmatrix} I_1(m) & I_2(m) \\ I_2(m) & I_1(-m) \end{bmatrix}; \quad m = 2, 3, \ldots \quad (6)$$

$$I_1(m) = \frac{2}{\pi} \int_0^{\frac{\pi}{2}} \left[\frac{F(2r \sin \theta)}{2r \sin \theta} + F'(2r \sin \theta) \right] \sin^2 ((m + 1)\theta) \, d\theta; \quad (7a)$$

$$I_2(m) = \frac{2}{\pi} \int_0^{\frac{\pi}{2}} \left[\frac{F(2r \sin \theta)}{2r \sin \theta} - F'(2r \sin \theta) \right] \left[\sin^2 (m\theta) - \sin^2 (\theta) \right] \, d\theta. \quad (7b)$$

• Eigenfunction is a pure fourier mode when projected to the curvilinear coordinates of the circle.
Quadratic force \(F(r) = r - r^2 \)

- Computing explicitly,

\[
\text{tr } M(m) = -\frac{(4m^4 - m^2 - 9)}{(4m^2 - 1)(4m^2 - 9)} < 0, \quad m = 2, 3, \ldots
\]

\[
\det M(m) = \frac{3m^2(2m^2 + 1)}{(4m^2 - 9)(4m^2 - 1)^2} > 0, \quad m = 2, 3, \ldots
\]

- Conclusion: **ring pattern corresponding to** \(F(r) = r - r^2 \) **is locally stable**

- For large \(m \), the two eigenvalues are \(\lambda \sim -\frac{1}{4} \) and \(\lambda \sim -\frac{3}{8m^2} \to 0 \) as \(m \to \infty \). The presence of arbitrary small eigenvalues implies the existence of very slow dynamics near the ring equilibrium.
General power force

\[F(r) = r^p - r^q, \quad 0 < p < q \]

- The mode \(m = \infty \) is stable if and only if \(pq > 1 \) and \(p < 1 \).
- Stability of other modes can be expressed in terms of Gamma functions.
- The dominant unstable mode corresponds to \(m = 3 \); the boundary is given by
 \[0 = 723 - 594(p + q) - 27(p^2 + q^2) - 431pq + 106(pq^2 + p^2q) + 19(p^3q + pq^3) \]
 \[+ 10(p^3q^2 + p^2q^3) + 6(p^3 + q^3) + p^3q^3; \]
- Boundaries for \(m = 4, 5, \ldots \) are similarly expressed in terms of higher order polynomials in \(p, q \).
(In)stability of $m \gg 1$ modes

- If $\lambda(m) > 0$ for all sufficiently large m, then we call the ring solution **ill-posed**. Otherwise we call it **well-posed**.

- For ill-posed problems, the ring can degenerate into either an annulus (eg. $F(x) = 0.5 + x - x^2$) or discrete set of points (eg $F(x) = x^{1.3} - x^2$)

- , if $F(r)$ is C^4 on $[0, 2r]$, then the necessary and sufficient conditions for well-posedness of a ring are:

 \[
 F(0) = 0, \quad F''(0) < 0 \quad \text{and} \quad \int_0^{\pi/2} \left(\frac{F(2r \sin \theta)}{2r \sin \theta} - F'(2r \sin \theta) \right) d\theta < 0.
 \]

- Ring solution for the morse force $F(r) = \exp(-r) - F \exp(-r/L)$ is always ill-posed.
Discrete vs. continuous

• Consider e.g. \(F(r) = \tanh(4(1 - r)) - 0.5 \). The ring for the \textit{continuous model} is ill-posed since \(F(0) > 0 \). But the ring for the \textit{discrete model} is stable with \(N = 120 \) particles!

• The most unstable mode in the discrete system is \(m = N/2 \) and can be stable even if the continuous model is ill-posed!

• This can lead to “thin annuli” solutions...
Weakly nonlinear analysis

- Near the instability threshold, higher-order analysis shows a **supercritical pitchfork bifurcation**, whereby a ring solution bifurcates into an $m-$symmetry breaking solution.
- This shows existence of nonlocal solutions.
- Example: $F(r) = r^{1.5} - r^q$; bifurcation $m = 3$ occurs at $q = q_c \approx 4.9696$; nonlinear analysis predicts
 \[
 \max_i |x_i| - \min_i |x_i| = \sqrt{\max 0, \tau(q - q_c)}; \quad \tau \approx 0.109.
 \]
3D sphere instabilities

- Radius satisfies: \[\int_0^\pi F(2r_0 \sin \theta) \sin \theta \sin 2\theta = 0 \]
- Instability can be done using spherical harmonics
Stability of a spherical shell

Define
\[g(s) := \frac{F(\sqrt{2s})}{\sqrt{2s}}; \]

The spherical shell has a radius given implicitly by
\[0 = \int_{-1}^{1} g(R^2(1 - s))(1 - s)ds. \]

Its stability is given by a sequence of 2x2 eigenvalue problems
\[\lambda \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} \alpha + \lambda_l(g_1) & l(l + 1)\lambda_l(g_2) \\ \lambda_l(g_2) & \frac{l(l+1)}{R^2}\lambda_l(g_3) \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}, \quad l = 2, 3, 4, \ldots \]

where
\[\lambda_l(f) := 2\pi \int_{-1}^{1} f(s)P_l(s) \, ds; \]

with \(P_l(s) \) the Legendre polynomial and
\[\alpha := 8\pi g(2R^2) + \lambda_0(g(R^2(1 - s^2))) \]
\[g_1(s) := R^2 g'(R^2(1 - s))(1 - s)^2 - g(R^2(1 - s))s \]
\[g_2(s) := g(R^2(1 - s))(1 - s); \quad g_3(s) := \int_{R^2}^{R^2(1-s)} g(z)\,dz. \]
Well-posedness in 3D

Suppose that \(g(s) \) can be written in terms of the generalized power series as

\[
g(s) = \sum_{i=1}^{\infty} c_i s^{p_i}, \quad p_1 < p_2 < \cdots \quad \text{with} \quad c_1 > 0.
\]

Then the ring is well-posed [i.e. \(\lambda < 0 \) for all sufficiently large \(l \)] if

(i) \(\alpha < 0 \) and (ii) \(p_1 \in (-1, 0) \cup (1, 2) \cup (3, 4) \ldots \)

The ring is ill-posed [i.e. \(\lambda > 0 \) for all sufficiently large \(l \)] if either \(\alpha > 0 \) or \(p_1 \notin [-1, 0] \cup [1, 2] \cup [3, 4] \ldots \)
Key identity to prove well-posedness:

\[
\int_{-1}^{1} (1-s)^p P_l(s) \, ds = \frac{2^{p+1}}{p+1} \frac{\Gamma(l-p)\Gamma(p+2)}{\Gamma(l+p+2)\Gamma(-p)} \Gamma(l-p)\Gamma(p+2) \Gamma(l+p+2) \Gamma(-p) \sim -\frac{1}{\pi} \sin(\pi p) \Gamma^2(p+1)2^{p+1}l^{-2p-2} \quad \text{as } l \to \infty.
\]

Proof:

• Use hypergeometric representation: \(P_l(s) = 2F_1 \left(\begin{array}{c} l+1, -l \\ 1 \end{array} ; \frac{1-s}{2} \right) \).

• Use generalized Euler transform:

\[
\begin{align*}
A_{+1}F_{B+1} \left(\begin{array}{c} a_1, \ldots, a_A, c \\ b_1, \ldots, b_B, d \end{array} ; z \right) &= \frac{\Gamma(d)}{\Gamma(c)\Gamma(d-c)} \int_0^1 t^{c-1}(1-t)^{d-c-1} A_{B+1}F_{A+1} \left(\begin{array}{c} a_1, \ldots, a_A, c \\ b_1, \ldots, b_B, d \end{array} ; z \right) dt,
\end{align*}
\]

to get \(\int_{-1}^{1} (1-s)^p P_l(s) \, ds = \frac{2\pi 2^{p+1}}{p+1} 3F_2 \left(\begin{array}{c} p+1, l+1, -l \\ p+2, 1 \end{array} ; 1 \right) \).

• Apply the Saalschütz Theorem to simplify

\[
3F_2 \left(\begin{array}{c} p+1, l+1, -l \\ p+2, 1 \end{array} ; 1 \right) = \frac{\Gamma(l-p)\Gamma(p+2)}{\Gamma(l+p+2)\Gamma(-p)}.
\]
Generalized Lennard-Jones interaction

\[g(s) = s^{-p} - s^{-q}; \quad 0 < p, q < 1; \quad p > q \]

- Well posed if \(q < \frac{2p-1}{2p-2} \); ill-posed if \(q > \frac{2p-1}{2p-2} \).

Example: steady state with \(N = 1000 \) particles. (a) \((p, q) = (1/3, 1/6)\). Particles concentrate uniformly on a surface of the sphere, with no particles in the interior. (b) \((p, q) = (1/2, 1/4)\). Particles fill the interior of a ball. The particles are color-coded according to their distance from the center of mass.
Custom-designed kernels

- In 3D, we can design force $F(r)$ which is stable for all modes except specified mode.

- EXAMPLE: Suppose we want only mode $m = 5$ to be unstable. Using our algorithm, we get

$$F(r) = \left\{ 3 \left(1 - \frac{r^2}{2} \right)^2 + 4 \left(1 - \frac{r^2}{2} \right)^3 - \left(1 - \frac{r^2}{2} \right)^4 \right\} r + \varepsilon; \quad \varepsilon = 0.1.$$
Part II: Constant-density swarms

- Biological swarms have sharp boundaries, relatively **constant internal population**.

- Question: *What interaction force leads to such swarms?*

- More generally, can we deduce an interaction force from the swarm density?
Claim. Suppose that

\[F(r) = \frac{1}{r^{n-1}} - r, \quad \text{where } n \equiv \text{dimension} \]

Then the aggregation model

\[\rho_t + \nabla \cdot (\rho v) = 0; \quad v(x) = \int_{\mathbb{R}^n} F(|x-y|) \frac{x-y}{|x-y|} \rho(y) dy. \]

admits a steady state of the form

\[\rho(x) = \begin{cases} 1, & |x| < R \\ 0, & |x| > R \end{cases}; \quad v(x) = \begin{cases} 0, & |x| < 1 \\ -ax, & |x| > 1 \end{cases}. \]

where \(R = 1 \) for \(n = 1, 2 \) and \(a = 2 \) in one dimension and \(a = 2\pi \) in two dimensions.
Proof for two dimensions

Define

\[G(x) := \ln |x| - \frac{|x|^2}{2}; \quad M = \int_{\mathbb{R}^n} \rho(y) dy \]

Then we have:

\[\nabla G = F(|x|) \frac{x}{|x|} \quad \text{and} \quad \Delta G(x) = 2\pi \delta(x) - 2. \]

so that

\[v(x) = \int_{\mathbb{R}^n} \nabla_x G(x - y) \rho(y) dy. \]

Thus we get:

\[\nabla \cdot v = \int_{\mathbb{R}^n} (2\pi \delta(x - y) - 2) \rho(y) dy \]

\[= 2\pi \rho(x) - 2M \]

\[= \begin{cases}
0, & |x| < R \\
-2M, & |x| > R
\end{cases} \]

The steady state satisfies \(\nabla \cdot v = 0 \) inside some ball of radius \(R \) with \(\rho = 0 \) outside such a ball but then \(\rho = M/\pi \) inside this ball and \(M = \int_{\mathbb{R}^n} \rho(y) dy = MR^2 \implies R = 1. \)
Dynamics in 1D with $F(r) = 1 - r$

Assume WLOG that

$$\int_{-\infty}^{\infty} x \rho(x) = 0; \quad M := \int_{-\infty}^{\infty} \rho(x) \, dx$$

Then

$$v(x) = \int_{-\infty}^{\infty} F(|x - y|) \frac{x - y}{|x - y|} \rho(y) \, dy$$

$$= \int_{-\infty}^{\infty} (1 - |x - y|) \text{sign}(x - y) \rho(y)$$

$$= 2 \int_{-\infty}^{x} \rho(y) \, dy - M(x + 1).$$

and continuity equations become

$$\rho_t + v \rho_x = -v_x \rho$$

$$= (M - 2\rho) \rho$$

Define the characteristic curves $X(t, x_0)$ by

$$\frac{d}{dt} X(t; x_0) = v; \quad X(0, x_0) = x_0$$
Then along the characteristics, we have \(\rho = \rho(X, t); \)

\[
\frac{d}{dt} \rho = \rho(M - 2\rho)
\]

Solving we get:

\[
\rho(X(t, x_0), t) = \frac{M}{2 + e^{-Mt}(M/\rho_0 - 2)}; \quad \rho(X(t, x_0), t) \to M/2 \text{ as } t \to \infty
\]
Let

\[w := \int_{-\infty}^{x} \rho(y) dy \]

then

\[v = 2w - M(x + 1); \quad v_x = 2\rho - M \]

and integrating \(\rho_t + (\rho v)_x = 0 \) we get:

\[w_t + vw_x = 0 \]

Thus \(w \) is constant along the characteristics \(X \) of \(\rho \), so that characteristics \(\frac{d}{dt}X = v \) become

\[\frac{d}{dt}X = 2w_0 - M(X + 1); \quad X(0; x_0) = x_0 \]
Summary for $F(r) = 1 - r$ in 1D:

$$X = \frac{2w_0(x_0)}{M} - 1 + e^{-Mt} \left(x_0 + 1 - \frac{2w_0(x_0)}{M} \right)$$

$$w_0(x_0) = \int_{-\infty}^{x_0} \rho_0(z)dz; \quad M = \int_{-\infty}^{\infty} \rho_0(z)dz$$

$$\rho(X, t) = \frac{M}{2 + e^{-tM}(M/\rho_0(x_0) - 2)}$$

Example: $\rho_0(x) = \exp \left(-x^2 \right) / \sqrt{\pi}$; $M = 1$:

Diagram:
- X vs. t
- Density vs. x for different time steps.

31
Global stability

In limit \(t \to \infty \) we get:

\[
X = \frac{2w_0}{M} - 1; \quad w_0 = 0 \ldots M; \quad \rho(X, \infty) = \frac{M}{2}
\]

We have shown that as \(t \to \infty \), the steady state is

\[
\rho(x, \infty) = \begin{cases}
 M/2, & |x| < 1 \\
 0, & |x| > 1
\end{cases}
\] \hspace{1cm} (10)

- This **proves the global stability** of (10)!

- Characteristics intersect at \(t = \infty \); solution forms a shock at \(x = \pm 1 \) at \(t = \infty \).
Dynamics in 2D, \(F(r) = \frac{1}{r} - r \)

- Similar to 1D,

\[
\nabla \cdot v = 2\pi \rho(x) - 4\pi M; \\
\rho_t + v \cdot \nabla \rho = -\rho \nabla \cdot v = -\rho (\rho - 2M) 2\pi
\]

- Along the characteristics:

\[
\frac{d}{dt}X(t; x_0) = v; \quad X(0, x_0) = x_0
\]

we still get

\[
\frac{d}{dt} \rho = 2\pi \rho (2M - \rho); \\
\rho(X(t; x_0), t) = \frac{2M}{1 + \left(\frac{2M}{\rho(x_0)} - 1\right) \exp(-4\pi M t)} \quad (11)
\]

- Continuity equations yield:

\[
\rho(X(t; x_0), t) \det \nabla_{x_0}X(t; x_0) = \rho_0(x_0)
\]
Using (11) we get
\[
\det \nabla_{x_0} X(t; x_0) = \frac{\rho_0(x_0)}{2M} + \left(1 - \frac{\rho_0(x_0)}{2M}\right) \exp(-4\pi Mt).
\]

- If \(\rho\) is \textbf{radially symmetric}, characteristics are also radially symmetric, i.e.
\[
X(t; x_0) = \lambda(|x_0|, t) x_0
\]
then
\[
\det \nabla_{x_0} X(t; x_0) = \lambda(t; r) (\lambda(t; r) + \lambda_r(t; r)r), \quad r = |x_0|
\]
so that
\[
\lambda^2 + \lambda_r \lambda r = \frac{\rho_0(x_0)}{2M} + \left(1 - \frac{\rho_0(x_0)}{2M}\right) \exp(-4\pi Mt)
\]
\[
\lambda^2 r^2 = \frac{1}{M} \int_0^r s \rho_0(s) ds + 2 \exp(-4\pi Mt) \int_0^r s \left(1 - \frac{\rho(s)}{2M}\right) ds
\]
So \textbf{characteristics are fully solvable}!!

- This proves \textbf{global stability in the space of radial initial conditions} \(\rho_0(x) = \rho_0(|x|)\).

- More general global stability is still open.
The force $F(r) = \frac{1}{r} - rq^{-1}$ in 2D

- If $q = 2$, we have explicit ode and solution for characteristics.

- For other q, no explicit solution is available but we have **differential inequalities**:

 Define
 \[
 \rho_{\text{max}} := \sup_x \rho(x, t); \quad R(t) := \text{radius of support of } \rho(x, t)
 \]

 Then
 \[
 \frac{d\rho_{\text{max}}}{dt} \leq (aR^{q-2} - b\rho_{\text{max}})\rho_{\text{max}}
 \]
 \[
 \frac{dR}{dt} \leq c\sqrt{\rho_{\text{max}}} - dR^{q-1},
 \]

 where a, b, c, d are some [known] positive constants.

- It follows that if $R(0)$ is sufficiently big, then $R(t), \rho_{\text{max}}(t)$ remain bounded for all t. [using bounding box argument]

- **Theorem**: For $q \geq 2$, there exists a bounded steady state [uniqueness??]
Inverse problem: Custom-designer kernels: 1D

Theorem. In one dimension, consider a radially symmetric density of the form

\[
\rho(x) = \begin{cases}
 b_0 + b_2x^2 + b_4x^4 + \ldots + b_{2n}x^{2n}, & |x| < R \\
 0, & |x| \geq R
\end{cases}
\]

(12)

Define the following quantities,

\[
m_{2q} := \int_0^R \rho(r)r^{2q}dr.
\]

(13)

Then \(\rho(r)\) is the steady state corresponding to the kernel

\[
F(r) = 1 - a_0r - \frac{a_2}{3}r^3 - \frac{a_4}{5}r^5 - \ldots - \frac{a_{2n}}{2n+1}r^{2n+1}
\]

(14)

where the constants \(a_0, a_2, \ldots, a_{2n}\), are computed from the constants \(b_0, b_2, \ldots, b_{2n}\) by solving the following linear problem:

\[
b_{2k} = \sum_{j=k}^{n} a_{2j} \binom{2j}{2k} m_{2(j-k)}, \quad k = 0 \ldots n.
\]

(15)
Example: custom kernels 1D

Example 1: $\rho = 1 - x^2$, $R = 1$, then $F(r) = 1 - \frac{9}{5}r + \frac{1}{2}r^3$.

Example 2: $\rho = x^2$, $R = 1$, then $F(r) = 1 + \frac{9}{5}r - r^3$.

Example 3: $\rho = \frac{1}{2} + x^2 - x^4$, $R = 1$; then $F(r) = 1 + \frac{209425}{336091}r - \frac{4150}{2527}r^3 + \frac{6}{19}r^5$.
Inverse problem: Custom-designer kernels: 2D

Theorem. In two dimensions, consider a radially symmetric density \(\rho(x) = \rho(|x|) \) of the form

\[
\rho(r) = \begin{cases}
 b_0 + b_2r^2 + b_4r^4 + \ldots + b_{2n}r^{2n}, & r < R \\
 0, & r \geq R
\end{cases}
\]
(16)

Define the following quantities,

\[
m_{2q} := \int_0^R \rho(r)r^{2q}dr.
\]
(17)

Then \(\rho(r) \) is the steady state corresponding to the kernel

\[
F(r) = \frac{1}{r} - \frac{a_0}{2}r - \frac{a_2}{4}r^3 - \ldots - \frac{a_{2n}}{2n + 2}r^{2n+1}
\]
(18)

where the constants \(a_0, a_2, \ldots, a_{2n} \) are computed from the constants \(b_0, b_2, \ldots, b_{2n} \) by solving the following linear problem:

\[
b_{2k} = \sum_{j=k}^{n} a_{2j} \binom{j}{k}^2 m_{2(j-k)+1}; \quad k = 0 \ldots n.
\]
(19)

This system always has a unique solution for provided that \(m_0 \neq 0 \).
Numerical simulations, 1D

- First, use standard ODE solver to integrate the corresponding discrete particle model,
 \[
 \frac{dx_j}{dt} = \frac{1}{N} \sum_{k=1 \ldots N, k \neq j} F(|x_j - x_k|) \frac{x_j - x_k}{|x_j - x_k|}, \quad j = 1 \ldots N.
 \]

- How to compute \(\rho(x) \) from \(x_i \)? [Topaz-Bernoff, 2010]
 - Use \(x_i \) to approximate the cumulative distribution, \(w(x) = \int_{-\infty}^{x} \rho(z) dz \).
 - Next take derivative to get \(\rho(x) = w'(x) \)

[Figure taken from Topaz+Bernoff, 2010 preprint]
Numerical simulations, 2D

• Solve for x_i using ODE particle model as before [$2N$ variables]

• Use x_i to compute Voronoi diagram;

• Estimate $\rho(x_j) = 1/a_j$ where a_j is the area of the voronoi cell around x_j.

• Use Delanay triangulation to generate smooth mesh.

• Example: Take

$$\rho(r) = \begin{cases}
1 + r^2, & r < 1 \\
0, & r > 0
\end{cases}$$

Then by Custom-designed kernel in 2D is:

$$F(r) = \frac{1}{r} - \frac{8}{27}r - \frac{r^3}{3}.$$

Running the particle method yeids...
Numerical solutions for radial steady states for \(F(r) = \frac{1}{r} - r^{q-1} \)

- Radial steady states of radius \(R \) satisfy
 \[
 \rho(r) = 2q \int_0^R (r' \rho(r')) I(r, r') dr'
 \]
 where \(c(q) \) is some constant and
 \[
 I(r, r') = \int_0^\pi (r^2 + r'^2 - 2rr' \sin \theta) q/2^{-1} d\theta.
 \]

- To find \(\rho \) and \(R \), we adjust \(R \) until the operator \(\rho \rightarrow c(q) \int_0^R (r' \rho(r')) K(r, r') dr' \) has eigenvalue 1; then \(\rho \) is the corresponding eigenfunction.
Discussions/open problems

- **Constant density states with** $F(r) = r^{1-n} - r$. What is the biological mechanism to minimizes overcrowding?

- Open question: **global stability** for $F(r) = r^{1-n} - r$? [can show for $n = 1$ or for radial initial conditions if $n \geq 2$.]

- Connection to Thompson problem and ball-packing problems:
 - Equilibrium is a hexagonal lattice with “defects”. Can we study these??

- Most of the results generalize to n dimensions.

- This talk and related papers are downloadable from my website
 http://www.mathstat.dal.ca/~tkolokol/papers

Thank you!