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• We propose a model which incorporates the effect of globalization on class mobility.
• The model illustrates a transition wealth mobility versus wealth stratification.
• Increasing connectivity leads to abrupt transitions in inequality and mobility.
• Wealth hotspots appear at small connectivity and dissolve at large connectivity.
• This model recovers both the Kuznets curve as well as the ‘‘Great Gatsby’’ curve.
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a b s t r a c t

We consider a variant of the Bouchaud–Mézard model for wealth distribution in a society which
incorporates the interaction radius between the agents, to model the extent of globalization in a society.
The wealth distribution depends critically on the extent of this interaction. When interaction is relatively
local, a small cluster of individuals emergeswhich accumulatemost of the society’s wealth. In this regime,
the society is highly stratified with little or no class mobility. As the interaction is increased, the number
of wealthy agents decreases, but the overall inequality rises as the freed-up wealth is transferred to the
remaining wealthy agents. However when the interaction exceeds a certain critical threshold, the society
becomes highly mobile resulting in a much lower economic inequality (low Gini index). This is consistent
with the Kuznets upside-down U shaped inequality curve hypothesis.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Changes in societal structure are driven in large part by the
forces of globalization. There is a continuing debate on the effect
of globalization onwealth distribution. The relationship is complex
and depends on amultitude of factors, including the type of global-
ization [1] and the level of the country’s development [2]. Kuznets
[3] postulated a famous hypothesis that the economic inequality
generally follows an inverted-U shape as a function of develop-
ment. Recent studies [4–6] have proposed that the inequality as
a function of society’s ‘‘openness’’ has a similar shape.

One of the simplest agent-based models of wealth distribution
is the kinetic or ‘‘gas-collision’’ model motivated by ideal gas dis-
tribution in physics [7,8]. Consider a society of n individuals, each
having a certain amount of dollars to start with. At each instant,
a ‘‘winner’’ and a ‘‘loser’’ are chosen at random, with the winner
receiving one dollar from the loser, provided that the loser has at
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least a dollar to give. After many such trades, the wealth distri-
bution settles to an exponentially decaying distribution, identical
to Boltzmann’s distribution for free gases. Variants of this model,
where the amount of trade scales with the winner’s wealth, lead to
algebraically decaying tails (e.g. Pareto distribution) [9,10]. Many
related agent models have been proposed, which lead to similar
distributions [10–12]; see e.g. [13–15] for a recent surveys.

While kinetic models capture realistic wealth distributions
[16,17], these models do not capture the degree of mobility
within a society. There is a high correlation between intergen-
erational mobility and inequality [18–20]—the so-called ‘‘Great
Gatsby’’ curve. On the other hand, simulations of trader models
such as [8,10,11] show a continual upwards and downwards mo-
bility of individuals, even when the overall Gini index1 is high.
That is, while the overall distribution remains roughly the same
with time, each individual’s wealth fluctuates, so that the long-
time average wealth of each individual is the same.

1 The Gini index is the standard measure of inequality in a population. For n
individuals with wealth xj , the Gini index is

∑
i
∑

j|xi − xj|/(2n
∑

jxj).
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Fig. 1. Wealth distribution for wage earners model with full connectivity. Top:
density for several values of a, b as given. Dashed line is the limiting distribution
given by (3). In all cases, n = 100 with mean x̄ = 1 (so that the total wealth is 100).
Bottom: Distribution of three randomly chosen individual agents in time is shown
with a solid curve. Stationary distribution (3) of the society as awhole is shownwith
a dashed curve. It demonstrates that all individuals have identical distribution in
time, which is also identical to the stationary distribution of the society as a whole.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Here, we use a variant of the Bouchaud–Mézard model [11] to
capture the transition fromhigh classmobility to a highly stratified
society using an agent-based framework. This is done by incorpo-
rating the notion of spatial distance between the agents. Instead
of pairwise interactions as in the gas-collision model of wealth, or
all-to-all interactions as in the original Bouchaud–Mézard model,
we consider interactions of neighbourswithin a certain radiusR.By
considering the mean-field limit, we examine how the inequality
level depends on R. A key finding of this model is that for suffi-
ciently low R and when the return on investments is sufficiently
high, the society is highly stratified with little or no class mobility
and high inequality. As the connectivity is increased past a certain
critical threshold, an instability is triggered resulting in a sudden
drop of inequality and high class mobility. This effect is similar to
the upside-down U Kuznets curve.

2. All-to-all connectedness

Before presenting a model with partial connectivity, let us start
by considering a simplemodel of ‘‘wage earning’’,which is a variant
of the Bouchaud–Mézard model. Choose an agent j at random and
increase its wealth xj by wj where

wj = axj + bx̄. (1)

Here, x̄ =
1
n

∑n
j=1xj is the average wealth of the society and param-

eters a, b represent wealth generation through investments and

fixed income, respectively. We assume that both a, b are positive.
Since we are interested in the relative wealth between the agents,
after each step, we rescale each agent’s wealth so that the overall
total wealth is conserved. Since the total amount of money T is
increased by wj, this means rescaling the wealth of every agent
by the amount T/(T + wj). This can be thought as an inflationary
decrease of the value of money. Repeating this process multiple
times yields a stationary distribution which depends on a, b.

The model (1) is very similar to the Bouchaud–Mézard model
[11]. The difference is where the randomness comes in. In
the Bouchaud–Mézard model, the parameters a, b are stochastic,
whereas here, we pick the agents at random at each time step, in
analogy to [8].

In Appendix A we show that in the limit a, b ≪ O(1), the
resulting density distribution u(x) is approximated by an ODE
1
2

(
(ax + b)2u

)′′
+ (b(x − 1)u)′ = 0 (2)

where (without loss of generality) we scaled the mean to be one:
x̄ = 1. This ODE admits an exact solution

u(x) = C
(
x +

b
a

)−

(
2+2 b

a2

)
exp

(
−

2b (a + b)
a3

1(
x +

b
a

)) , (3)

where the normalization constant C is chosen so that
∫

∞

0 u = 1.
There are two distinguished limits of (2): the low investment

and high investment regimes. The low investment regime is when
a = O(b) or a ≪ O(b). In this case, the distribution asymptotes
to a Gaussian with mean x̄ = 1 and standard deviation σ =

(a + b)
√
1/(2b); see the trend indicated by the purple and green

curves in Fig. 1(top). The wealth distribution concentrates around
the mean, yielding a relatively small Gini index (with Gini ≈

0.56(a + b)
√
1/(2b))

On the other hand, the ‘‘high investment’’ regime occurs when
a ≫ O(b); cf. the blue and red curves in Fig. 1(top). In this
regime, distribution (3) reduces to the well-known Bouchaud–
Mézard distribution [8],

u(x) = Cx−p exp (− (p − 2) /x) , p = 2 + 2
b
a2

. (4)

Regardless of the values of a, b this model exhibits class mobil-
ity: rich agents will eventually become poor and vice-versa, if the
simulation goes on for long enough. In other words, every agent
has the same distribution of wealth in time, which is also identical
to the stationary distribution of the society as a whole. This is
illustrated in Fig. 1(bottom). In many real societies however, the
wealth often tends to be ‘‘sticky’’, with inter-generational wealth
transfer correlating strongly with high inequality.

3. Near-neighbour interactions

To account for stratification of wealth, we now introduce near-
neighbour interactions. The wealth accumulation still follows (1)
except that the rescaling is restricted to an R-neighbourhood of xj.
This can be thought of as a local devaluation. In other words, the
updated values are:

x̂k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(xj + wj)

Tj
Tj + wj

, if k = j

xk
Tj

Tj + wj
, if k ∈ Nj \ {j}

xk, otherwise

(5)

where Nj is the R-neighbourhood of xj and Tj is the total wealth of
the neighbourhood:

Nj = {j : j ∈ Z, |j − k| ≤ R} ; Tj =

∑
i∈Nj

xi. (6)
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Fig. 2. Top: Comparison of stochastic model (5) versus mean-field limit model (7) for several values of Rwith a = 0.05, b = 0.01. Green dots give a snapshot of a simulation
after 106 steps. The black line shows the average wealth over 106 simulations of the stochastic model whereas the dashed red line is the steady state of the corresponding
mean-field limit. Bottom: Gini index as a function of the connectivity radius R with a = 0.05, b = 0.01. Dots are generated by simulating (5), starting with random initial
conditions; dashed line is the simulation of the mean-field model (7). Note multiple abrupt changes including a window of mobility 28 ≤ R ≤ 30.

We impose periodic boundary conditions by placing the agents on
a ring of length n so that the indices are wrapped around mod
n. The case of full connectivity is just a special case of this rule
corresponding to R = (n − 1)/2 when n is odd.

Fig. 2(top) shows the simulation of (5) for several values of
trade distance R, with a = 0.05, b = 0.01. When R is small,
several ‘‘spikes’’ of wealthy agents emerge. As R is increased, there
is wealth consolidation, with fewer and fewer spikes remaining.
Eventually, the spikes disappear entirely when the neighbourhood
size is increased past Rmax = 42, about 85% of the domain. This
corresponds to sharp transition from a highly stratified and unequal
society to amuchmore egalitarian societywith high classmobility.

This model recovers naturally the ‘‘Great Gatsby’’ correlation
between the inequality and intergenerational mobility. To illus-
trate this, consider the Gini index. The Gini index of zero corre-
sponds to perfect equality while Gini index of one is the extreme
‘‘pauper’’ society where a single person has all of the society’s
wealth. Fig. 2(bottom) shows the Gini index as a function of R,
averaged over 106 simulations. The areas of high Gini index coin-
cide precisely with a stratified society, and abrupt transitions from
stratified to mobile society are accompanied by a corresponding
sharp drop in the Gini index.

To understand the origin of this transition, consider the mean-
field limit of thismodel as derived in Appendix B.We show that the
long-time average of agent xk satisfies a deterministic ODE system

dxk
dt

= wk − xk
∑
j∈Nk

wj

Tj
, (7)

where wj, Tj and Nk are given in (1), (6). This system admits a
constant steady state xk = x̄, which represents a society with
high degree of mobility, in other words, this is the state where
each agent’s long-time average wealth is the same. We show in
Appendix B that this state is stable when a < ac where ac is given
by

ac = b

⎛⎝−1 −
1

minm=1,...,n
sin( πm

n (2R+1))
(2R+1) sin( πm

n )

⎞⎠ . (8)

This curve is shown as dashed red line in Fig. 3. As a is increased
past ac , the population suddenly transitions from highly mobile to
highly stratified, and this is accompanied by a sudden transition
from low to high inequality (low to high Gini index). The resulting
instability represents spontaneous breaking of spatial translation
symmetry along the ring where the agents are placed, and repre-
sents spontaneous inequality enhancement and decrease ofwealth
mobility, as illustrated in the top row of Fig. 2.

A similar bifurcation occurs with respect to R, provided that
a > amin, where amin = 3.6033·b = minRac is shownby the dashed
horizontal line in Fig. 3. In fact, multiple transitions from stratified
to mobile society and back can occur as R is gradually increased, as
long as a/b < 6. This is what we see in Fig. 2(bottom), which is in
fact a horizontal slice of Fig. 3 at a/b = 5. The windows of mobility
disappear when a/b > 6, but the Gini index still undergoes
multiple abrupt jumps as R is increased, until R is increased past
Rmax (shownwith a green dashed curve in Fig. 3), atwhich point the
society becomes mobile and does not return to a stratified state.

More generally, stratification first occurs when R is sufficiently
small while the return on investment a is sufficiently large (a >

amin). For a relatively small R (i.e. local economy or little globaliza-
tion), stratification sets in suddenly when a is increased past amin.

In the stratified regime a number of ‘‘hot-spots’’ of high wealth
forms, see Fig. 2(top). As R is increased, the number of hot-spots
diminishes, which leads to a very complex relationship between
the Gini index and R, refer to Fig. 2. The inequality is the highest
just before a reduction in the number of hot-spots. In the aftermath
of a hot-spot disappearance there is a sharp drop in the Gini index
as the wealth is freed-up. However most of the freed-up wealth
is absorbed by the remaining hot-spots, leading to a consequent
increase in the Gini index as R continues to be increased. This
process of redistribution is repeated many times over, until only
two hot-spots are left. Once R is increased past Rmax, the last two
spots suddenly disappear, and the society abruptly transitions into
a highly mobile regime with low inequality.

In the limit R ≫ 1, n ≫ 1, the transition boundaries between
m andm + 1 spots (vertical lines in Fig. 3) correspond to the jump
in the most unstable mode, and satisfy sin (πm/x) /(mπ/x) =

sin (π (m + 1) /x) /(π (m + 1) /x) where x = n/(2R + 1) is the



Please cite this article in press as: J.H.M. Evers, et al., Agent-based model of the effect of globalization on inequality and class mobility, Physica D (2017),
http://dx.doi.org/10.1016/j.physd.2017.08.009.

4 J.H.M. Evers et al. / Physica D ( ) –

Fig. 3. Gini index as a function of the connectivity radius R and investment to wage ratio a/b. The figure is generated by simulating the continuummodel (7) for each choice
of (a/b, R). The black vertical lines (denoted by ’bdry’ in the legend) are the boundaries separating the regions with different number of hot-spots. Digits at the top represent
the number of hot-spots that arise. Initial conditions are xj = 1 for j ̸= 50 and x50 = 2.

Fig. 4. Boundary between mobile and stratified society. Dashed line is ac given
by (8). Society is mobile below the dashed line. Above the dashed line, hot-spots
of wealth form. Vertical lines denote the boundaries between different number of
hot-spots, as indicated by the digit.

first root to the left of x = m. The first few such values are: x2 =

1.7228, x3 = 2.4297, and more generally, xm ∼ 0.6991m as m →

∞. (The constant z = 0.6991 is the biggest root tan (π/z) = π/z.)
Note that in the regime where n/(2R + 1) ≫ 1 (with n, R ≫ 1),
the number of wealth hot-spots that is roughly proportional to
n/(2R + 1). This is illustrated in Fig. 4.

Finally, we mention that in the limit R ≫ 1, n ≫ 1 we can
take the continuum limit of the ODE system (7). We discretize
xk ∼ u (z) , z = k/n; z ∈ [0, 1] . Then the steady state satisfies
the integral equation∫

+r

−r

au(z + s) + b∫ r
−r u(z + s + y)dy

ds =
au(z) + b

u(z)
, r = R/n. (9)

It is an open question to obtain any results about this system
(beyond the linear stability analysis).

The rise of inequality followed by a sudden drop as the con-
nectivity is increased is qualitatively similar to the upside-down
U curve postulated by Kuznets [3]. The difference here is in the
abruptness of the transition frommobility to stratification, as well
as the possibility of multiple such transitions. Our model provides
for a nice demonstration of highly nonlinear response of inequality
to the increased trade and globalization. An extreme example is the
rise of robber barons during the guilded age in the 1870s (which
was precipitated by increased trade due to the development of
railroads) and the corresponding dramatic rise in inequality. A
more recent example is the consolidation in the retail sector with

the rise of Amazon and increased use of online shopping [21].
From 2006 to 2016, Amazon’s share of the market rose from 4%
to 54%, while the second closest competitor (Walmart) dropped
from 51% to 32%. The Gini index among the top nine companies
that dominate the retail sector rose from 0.56 to 0.81 in the same
time frame. Certainly increased connectivity due to internet played
a key role in the upheaval of the industry.

The phenomenon of stratification with increased connectivity,
followed by transition tomobility when connectivity is sufficiently
global is not limited to near-neighbour interactions. Instead of
‘‘geographical’’ connections where the local devaluation is within
all neighbours a distance R away, one can consider more general
interactions. An example of this is shown in Fig. 5, where we
used a random undirected graph (Erdös–Rényi graph) instead of a
geographical neighbourhood graph. Such a graph is constructed by
connecting any two nodes with probability p ∈ (0, 1) . The figure
shows the Gini index versus the average degree. Note the upside-
down U shape, consistent with Kuznets hypothesis. Also note a
sharp drop in Gini index for sufficiently high connectivity, similar
to the R-neighbourhoodmodel. Unlike the R-neighbourhood graph
where each node has the same degree, the nodes in Erdös–Rényi
graph have Poisson degree distributions. In either model, the
transition to low Gini index only happens when the connectivity
is very high, close to all-to-all.

4. Comparison with Bouchaud–Mézard model

Let us contrast ourmodel (5)with the Bouchaud–Mézardmodel
with local interactions [11]. The general model considered there is
a set of stochastic ODE’s

dxk = (
√
dtσξ + dt m)xk +

∑
j

dtJkjxj −
∑

j

dtJjkxi (10)

where σξ is a Gaussian random variable of standard deviation σ

and mean zero. We remark that in the case of all-to-all connect-
edness Jjk = J, the authors show that the density distribution is
given by the well-known formula (4), except that p = 2 +

J
σ2 .

In effect, the noise level σ plays the role of a whereas the trade
strength J plays the role of b. In this sense, the Bouchaud–Mézard
model with all-to-all interactions is a special case of model (1), in
the limit a2 = O(b).
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Fig. 5. Gini index for the model (5) but with random (Erdös–Rényi graph) connec-
tivity. Here, b = 0.01, n = 100 and a is as indicated. For higher values of a there is a
sudden transition to low Gini index as the connectivity is increased. For each value
of a, 1000 simulations are shown for randomly chosen values of edge probability p.

In [11] the authors consider a special case

Jkj =

⎧⎨⎩
J

2R + 1
, if |k − j| ≤ R

0, otherwise
(11)

corresponding to having local interactions within an R-neighbour-
hood, so that (10) becomes

dxk = (
√
dtσξ + dt m)xk + dtJ

(∑k+R
j=k−R xj

2R + 1
− xk

)
. (12)

The authors show that for sufficiently small J/σ 2 and with small
R, the model exhibits wealth condensation where very few agents
acquire most of the wealth, with a correspondingly very high Gini
index (e.g. gini = 0.8). The tell-tale sign of condensation is a
degenerate fat power-law tail distribution: u(x) ∼ Cx−p with p ≤ 2
for large x. However, this is not the same as wealth stratification:
even in the condensation regime, the long-time average of agent’s
wealth remains the same. To see this, consider the limit σ → 0.
Changing variables xk = emtyk yields the ODE system

y′

k = J

(∑k+R
j=k−R yj

2R + 1
− yk

)
admitting a constant steady state yk = y. Linearizing around this
constant state yields the eigenvalues

λ = J

(
sin
( 2πm

n (2R + 1)
)

(2R + 1) sin
( 2πm

n

) − 1

)
, m = 1, . . . , n,

which are all negative. As a result, there is no stratification ex-
pected in this model as σ → 0. This is confirmed with direct nu-
merical simulations. Nonetheless, for sufficiently large σ and small
R, relatively long transient populations are observed as illustrated
in Fig. 6

5. Conclusion

In conclusion, we have proposed an agent-based model of
wealth mobility and inequality, based on economic growth in-
corporating local devaluation within a certain connectivity radius.
This model exhibits two fundamental regimes: wealth mobility
versus wealth stratification. In the high mobility regime, each
individual agent’s wealth fluctuates with time, but all agents have
the same wealth distribution with respect to time (and the same
long-time average). By contrast, in the high stratification regime,

Fig. 6. Simulation of Bouchaud–Mézard model with near-neighbour interactions
(12). Parameters as shown in the title. Spatially-correlated patterns of wealth
concentrations form, but shift over long time-scales.

the long-time average wealth of different agents is not the same,
leading to caste-type societal structure. In this regime, few rich
agents accrue most of the societal wealth, and they remain rich for
the entire simulation, while poor agents remain poor. Increasing
connectivity leads to (possibly multiple) abrupt transitions in in-
equality and mobility, finally resulting in a highly mobile society
for sufficiently large connectivity. This model recovers both the
Kuznets curve as well as the ‘‘Great Gatsby’’ curve. It also under-
scores the complex nonlinear relationship between the inequality
and connectivity in the society.

Appendix A. Derivation of distribution for all-to-all connected-
ness

We now derive the distribution of wealth u(x) of each agent in
the all-to-all coupling case. Let K (x, y) denote the probability that
an agent starting with wealth y before the update step, will have
wealth x after the update step. The distribution u(x) then satisfies

u(x) =

∫
K (x, y)u(y)dy.

Here and below, we assume that u(x) is zero for negative x. By
scaling, we assume without loss of generality that x̄ = 1 so that
T =

∑
xj = n and wk = axk + b. Therefore the update rule is

xk ↦→

⎧⎪⎪⎨⎪⎪⎩
n (xk + wk)
n + wk

, with probability
1
n
;

n xk
n + wj

, for each j ̸= kwith probability
1
n
.

Then K (x, y) can be estimated as

K (x, y) =
1
n

δ

(
x −

n (y + (ay + b))
n + (ay + b)

)
+

n − 1
n

∫
δ

(
x −

n y
n + (az + b)

)
u(z) dz (13)

which yields the master equation

u(x) =
1
n

∫
δ

(
x −

n (y + (ay + b))
n + (ay + b)

)
u(y) dy (14)

+
n − 1
n

∫∫
δ

(
x −

n y
n + (az + b)

)
u(z) dz u(y) dy.
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The first integral evaluates to

I1 =
1
n

∫
δ

(
x −

n (y + (ay + b))
n + (ay + b)

)
u(y) dy

=
1
n

1
1 + a

u
(
x − b
1 + a

)
+ O

(
n−2) .

To evaluate the second integral, switch the order of integration.
This yields,

I2 =
n − 1
n

∫∫
δ

(
x −

n y
n + (az + b)

)
u(z) dz u(y) dy

=
n − 1
n

∫ (∫
δ

(
x −

n y
n + (az + b)

)
u(y)dy

)
u(z)dz

=
n − 1
n

∫
u
(
x +

x (az + b)
n

)(
1 +

az + b
n

)
u(z)dz.

A two-order expansion in n yields

I2 = u(x) +
1
n

{
u′(x) (a + b) x + u(x) (a + b − 1)

}
+ O

(
n−2)

whereweused the facts that
∫
u(z) =

∫
zu(z) = 1. Thus, to leading

order in n, the master equation (14) becomes

0 =
1

1 + a
u
(
x − b
1 + a

)
+ u′(x) (a + b) x + u(x) (a + b − 1) . (15)

Expanding up to O((a, b)2) yields a second-order ODE,

0 =
1
2
(ax + b)2u′′(x)

+ (2a(ax + b) + b (x − 1)) u′(x) +
(
a2 + b

)
u(x).

This ODE is exact and can be rewritten as

0 =
1
2

(
(ax + b)2u(x)

)′′
+ (b (x − 1) u(x))′. (16)

Integrating, assuming decay for large x, yields a first order ODE

0 =
1
2

(
(ax + b)2u(x)

)′
+ (b (x − 1) u(x))

whose solution is given by

u(x) = C
(
x +

b
a

)−

(
2+2 b

a2

)
exp

(
−

2b (a + b)
a3

1(
x +

b
a

)) ; (17)

where C is chosen so that
∫

∞

0 u = 1.
We remark that the ODE (16) can be viewed as a stationary state

of the Fokker–Planck equation ut + (A(x)u)x =
( 1
2B

2(x)u
)
xx for

a random process with a space-dependent diffusion of the form
B(x) = ax + b as well as drift of the form A(x) = b(1 − x). This
point of view was used in [11] to derive the original Bouchaud–
Mézard distribution, as well more general class of distributions
[13,22], including distributions that fit the empirically observed
distributions in the US [22].

Appendix B. Continuum limit and stability threshold for R-
neighbour model

Here, we derive the continuum limit (7) and its stability thresh-
olds (8). Suppose that all agents are updated every dt time step on
average. Relabel wk → dtwk so as to obtain a scale-free model in
the limit dt → 0. Then the rule (5) becomes

xk(t + dt) = xk +

⎛⎝ ∑
j∈Nk\{k}

(
xk

Tj
Tj + dtwj

− xk

)⎞⎠
+

(
(xk + dtwk)

Tk
Tk + dtwk

− xk

)
.

Expanding in Taylor series yields
dxk
dt

= wk − xk
∑
j∈Nk

wj

Tj
. (18)

which is precisely the ODE model (7). A trivial steady state of (18)
is the constant state xk = x̄. We linearize around x̄,

xk = x̄ + φkeλt , φk ≪ 1

to obtain the following eigenvalue problem,

λφk = aφk − φk (a + b) −
1

2R + 1

∑
j∈Nk

aφj (19)

+
a + b

(2R + 1)2
∑
j∈Nk

∑
l∈Nj

φl. (20)

This problem admits the following self-consistent ansatz:

φk = zk, where z = exp(2π im/n),m = 1, . . ., n. (21)

Define the Dirichlet kernel,

F (θ ) :=
1

2R + 1

R∑
l=−R

exp(iθ l) =
1

2R + 1
sin ((R + 1/2) θ)

sin(θ/2)
. (22)

Let θ = 2πm/n. We have
1

2R + 1

∑
j∈Nk

φj = zkF (θ ),

and∑
j∈Nk

∑
l∈Nj

φl = zk
R∑

j=−R

z j
R∑

l=−R

z l = zkF 2(θ )(2R + 1)2

so that upon substituting (21) into (19) we obtain

λ = −b − aF (θ ) + (a + b) F 2(θ ), θ =
2πm
n

, m = 1, . . . , n.

Note that when a = 0, we have λ = b
(
−1 + F 2

)
⩽ 0 since

F 2
∈ [0, 1]. On the other hand, when a is large enough, we have

λ ∼ a(F 2
−F ). From the explicit formula (22) it is easy to show that

there is an 1 ⩽ m ⩽ n such that F (θ ) < 0, and for such θ, λ > 0
for sufficiently large a. So the constant state xk = x̄ is stable for
sufficiently small a and is unstable for sufficiently large a. Setting
λ = 0 and solving the resulting expression for a, we obtain the
stability threshold ac(θ ) = b

(
−1 −

1
F (θ )

)
. Taking the minimum

over all admissible θ yields the expression (8).

References

[1] D. Asteriou, S. Dimelis, A. Moudatsou, Globalization and income inequality:
A panel data econometric approach for the EU27 countries, Econ. Model. 36
(2014) 592–599.

[2] H. Kratou, M. Goaied, How can globalization affect income distribution? evi-
dence from developing countries, Int. Trade J. 30 (2) (2016) 132–158.

[3] S. Kuznets, Economic growth and income inequality, Amer. Econ. Rev. (1955)
1–28.

[4] J.-e. Lee, Inequality in the globalizing Asia, Appl. Econ. 42 (23) (2010) 2975–
2984.

[5] A. Jalil, Modeling income inequality and openness in the framework of Kuznets
curve: New evidence from China, Econ. Model. 29 (2) (2012) 309–315.

[6] W. Cheng, Y. Wu, Understanding the Kuznets process: An empirical investi-
gation of income inequality in China: 1978–2011, Soc. Indicators Res. (2016)
1–20.

[7] S. Ispolatov, P.L. Krapivsky, S. Redner, Wealth distributions in asset exchange
models, Eur. Phys. J. B 2 (2) (1998) 267–276.

[8] A. Dragulescu, V.M. Yakovenko, Statistical mechanics of money, Eur. Phys. J. B
17 (4) (2000) 723–729.

[9] A. Banerjee, V.M. Yakovenko, Universal patterns of inequality, New J. Phys.
12 (7) (2010) 075032.

http://refhub.elsevier.com/S0167-2789(17)30255-5/sb1
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb1
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb1
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb1
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb1
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb2
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb2
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb2
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb3
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb3
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb3
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb4
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb4
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb4
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb5
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb5
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb5
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb6
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb6
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb6
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb6
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb6
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb7
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb7
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb7
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb8
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb8
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb8
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb9
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb9
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb9


Please cite this article in press as: J.H.M. Evers, et al., Agent-based model of the effect of globalization on inequality and class mobility, Physica D (2017),
http://dx.doi.org/10.1016/j.physd.2017.08.009.

J.H.M. Evers et al. / Physica D ( ) – 7

[10] A. Chakraborti, B.K. Chakrabarti, Statistical mechanics of money: how saving
propensity affects its distribution, Eur. Phys. J. B 17 (1) (2000) 167–170.

[11] J.-P. Bouchaud, M. Mézard, Wealth condensation in a simple model of econ-
omy, Physica A 282 (3) (2000) 536–545.

[12] F. Slanina, Inelastically scattering particles and wealth distribution in an open
economy, Phys. Rev. E 69 (4) (2004) 046102.

[13] V.M. Yakovenko, J.B. Rosser Jr., Colloquium: statistical mechanics of money,
wealth, and income, Rev. Modern Phys. 81 (4) (2009) 1703.

[14] B.K. Chakrabarti, A. Chakraborti, S.R. Chakravarty, A. Chatterjee, Econophysics
of Income and Wealth Distributions, Cambridge University Press, 2013.

[15] E. Samanidou, E. Zschischang, D. Stauffer, T. Lux, Agent-based models of
financial markets, Rep. Progr. Phys. 70 (3) (2007) 409.

[16] A. Drăgulescu, V.M. Yakovenko, Exponential and power-law probability distri-
butions of wealth and income in the United Kingdom and the United States,
Physica A 299 (1) (2001) 213–221.

[17] Y. Tao, X. Wu, T. Zhou, W. Yan, Y. Huang, H. Yu, B. Mondal, V.M. Yakovenko,
Universal exponential structure of income inequality: evidence from 60 coun-
tries, 2016. ArXiv Preprint ArXiv:1612.01624.

[18] M. Corak, Income inequality, equality of opportunity, and intergenerational
mobility, J. Econ. Perspect. 27 (3) (2013) 79–102.

[19] A. Björklund, M. Jäntti, Intergenerational income mobility and the role of
family background, in: Oxford Handbook of Economic Inequality, Oxford Uni-
versity Press, Oxford, 2009, pp. 491–521.

[20] D. Andrews, A. Leigh, More inequality, less social mobility, Appl. Econ. Lett.
16 (15) (2009) 1489–1492.

[21] J. Desjardins, The extraordinary size of amazon in one chart, 2017. http://
Www.Visualcapitalist.Com/Extraordinary-Size-Amazon-One-Chart/.

[22] A.C. Silva, V.M. Yakovenko, Temporal evolution of the thermal and superther-
mal income classes in the usa during 1983–2001, Europhys. Lett. 69 (2) (2004)
304.

http://refhub.elsevier.com/S0167-2789(17)30255-5/sb10
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb10
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb10
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb11
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb11
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb11
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb12
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb12
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb12
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb13
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb13
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb13
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb14
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb14
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb14
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb15
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb15
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb15
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb16
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb16
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb16
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb16
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb16
http://arxiv.org/ArXiv:1612.01624
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb18
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb18
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb18
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb19
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb19
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb19
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb19
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb19
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb20
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb20
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb20
http://Www.Visualcapitalist.Com/Extraordinary-Size-Amazon-One-Chart/
http://Www.Visualcapitalist.Com/Extraordinary-Size-Amazon-One-Chart/
http://Www.Visualcapitalist.Com/Extraordinary-Size-Amazon-One-Chart/
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb22
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb22
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb22
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb22
http://refhub.elsevier.com/S0167-2789(17)30255-5/sb22

	Agent-based model of the effect of globalization on inequality and class mobility
	Introduction
	All-to-all connectedness
	Near-neighbour interactions
	Comparison with Bouchaud–Mezard model
	Conclusion
	Derivation of distribution for all-to-all connectedness
	Continuum limit and stability threshold for R-neighbour model
	References


