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Many reaction-diffusion systems exhibit spot patterns. When the domain is a periodic rectan-
gle, many such patterns can be constructed explicitly using regular integer lattices, and moreover
numerical simulations show that they are prevalent even when starting with random initial condi-
tions. For a wide class of RD systems which includes the Schnakenberg model, these equilibria are
local minima of the a corresponding Green’s function potential. We use integer lattice enumeration
and Floquet theory to classify all stable such lattices on a square up to N = 200 spots. We then
investigate stability boundaries and bifurcations as the aspect ratio of the rectangle is varied. For a
rectangle with a small aspect ratio, we derive explicit thresholds for stability of a pattern consisting
of two interlaced stripes. For certain aspect ratios and N , there exist a perfect hexagonal lattice
without any defects. We determine stability boundaries of such lattices as the aspect ratio changes.
We also explore bifurcations and transitions that result when the lattice is deformed beyond its
stable regime. The results are illustrated and confirmed using the Schnakenberg reaction-diffusion
system.

1. INTRODUCTION

Many reaction-diffusion systems exhibit spot patterns. In certain limits when spots become localized, their dynamics
and equilibria locations can be be asymptotically described by a system of ODE’s for spot centers. The resulting
pattern arises as a stable equilibrium of this reduced ODE system. For a general bounded two-dimesional domain,
these reduced equations are typically too complex to solve explicitly, except for some special situations such as a disk
domain [1], or in the continuum limit of many spots [2]. In this paper we consider the case when the domain is a
rectangle with periodic boundary conditions. Such domains are often used for numerical simulations due to simplicity
of implementing the Laplace operator on a rectangle, going as far back as the original paper of Turing [3].

Spot locations for certain RD systems as well as many other problems have a unifying description in terms of
Green’s function energy. This potential arises in a variety of problems; see e.g. [4–7] and references therein. Let us
highlight some of them.

Problem 1. Mean First Passage Time (MFPT) on a domain with small traps. [4, 6–10] Consider a brownian
particle moving inside a rectangular domain

Ω = {(x, y) : 0 ≤ x ≤ L, 0 ≤ y ≤ H} ,

subject to periodic motion, so that (x, y) is taken mod (L,H) . Suppose that the domain Ω contains N small traps,
where each trap trap is a disk of radius ε centered at x = ξk, denoted by Bε(ξk). The particle is absorbed if it hits
one of the traps. Let u(x) be the expected time for the particle to be absorbed if it starts from location x. After some

FIG. 1. Examples of integer lattices. (a) N = 5, generated by by a single vector v1 = (1, 2) (on a square of sides N ×N). (b)
N = 16, generated by two vectors v1 = (2, 4) and v2 = (0, 8) . (c-e) Some further examples, all generated by a single vector.
Each title has the format n1 × n2 : a b c d as given by (1.7).
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rescaling, u satisfies 
∆u+ 1 = 0 inside Ω\

⋃
j

Bε(ξj)

u = 0 on
⋃

j ∂Bε(ξj).
u is periodic on ∂Ω: u(0, x2) = u(L1, x2) and u(x1, 0) = u(x1, L2)

(1.1)

The Mean First Passage Time (MFPT) is defined to be the average of u (x):

MFPT :=
1

LH

∫
Ω\

⋃
Bε(ξj)

u(x)dx.

A natural question is: how should the traps be arranged to capture the brownian particle as fast as possible, that is, to
minimize MFPT?

Problem 2. Fundamental eigenvalue of the Laplacian. This is the eigenvalue problem
∆u+ λu = 0 inside Ω\

⋃
j

Bε(ξj)

u = 0 on
⋃

j ∂Bε(ξj).
u is periodic on ∂Ω

(1.2)

where notation is the same as in MFPT problem. The goal is to arrange traps to minimize the principal eigenvalue λ.
Problem 3. Spike equilibria and stability for the Schnakenberg and other reaction-diffusion systems.

Here, we are interested in spike patterns consisting of N spikes and their stability for the Schnakenberg model on a
periodic domain. Using the scaling from [1], the model is

ut = ε2∆u− u+ u2v, 0 = ∆v +A− u2v
1

ε2
1

log ε−1
, (1.3)

where ε ≪ 1 is a small parameter and A is called the “feed rate”. The system is scaled in this particular way to
assure that the height of the spots is of O(1) in the inner region as ε→ 0.

All three problems above (and many others, see e.g. [7]) have, at their core, the following optimization problem.
Define the Modified Green’s function to satisfy

∆G− 1

|Ω|
+ δ (x) = 0;

∫
Ω

G = 0; G is periodic on ∂Ω. (1.4)

Define the Green’s function interaction potential (or energy) to be

E (ξ1, . . . ξN ) :=

N∑
k=1

N∑
j=k+1

G(ξk − ξj). (1.5)

It was shown in [7] that all three problems are related to E. The optimal trap locations for MFPT problem (1.1)
correspond to the (global) minimizer of E. Same applies for the eigenvalue problem (1.2). Finally, equilibrium spike
locations for the Schnakenberg model correspond to a critical point E; stable equilibria correspond to its local minima.
In fact, consider the gradient flow corresponding to the functional (1.5),

d

dt
ξk = −

∑
j ̸=k

∇G(ξk − ξj) (1.6)

As is well established, spike dynamics for many reaction-diffusion systems such as for the Schnakenberg model
[11, 12], or certain limits of Gierer-Meinhardt model [11, 13, 14], to leading order, follow the same gradient flow, up
to a temporal rescaling.

In this work we study a family of highly symmetric equilibria of (1.6), as well as their associated stability. The
family in question are periodic lattice patterns. Given N = n1n2, an integer lattice of N is a subset of ZN × ZN

constructed as follows, from two basis vectors:

L̃ = {(a, b)n2j1 + (c, d)n1j2 (modN) : j1 ∈ Zn1
, j2 ∈ Zn2

}; (a, b) ∈ Z2
n1
, (c, d) ∈ Z2

n2
, n1n2 = N (1.7)
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2 -0.05516(100) 3 -0.118(100) 4 -0.223(100) 5 -0.3202(100) 6 -0.4241(100) 7 -0.5346(100) 8 -0.6667(100) 9 -0.7908(100)

10 -0.9162(100) 11 -1.049(100) 12 -1.195(100) 13 -1.327(100) 14 -1.473(80) 14 -1.467(20) 15 -1.629(100) 16 -1.775(100)

17 -1.917(93) 17 -1.916(7) 18 -2.078(100) 19 -2.229(100) 20 -2.396(100) 21 -2.549(100) 22 -2.71(88) 22 -2.709(11)

22 -2.705(1) 23 -2.887(100) 24 -3.051(78) 24 -3.045(22) 25 -3.215(100) 26 -3.378(94) 26 -3.375(5) 26 -3.378(1)

27 -3.548(65) 27 -3.546(34) 27 -3.544(1) 28 -3.731(79) 28 -3.718(21) 29 -3.897(76) 29 -3.893(14) 29 -3.893(10)

30 -4.085(93) 30 -4.069(6) 30 -4.072(1)

FIG. 2. Stable equilibria of the gradient flow (1.6) for N = 1 . . . 30. For each N, 100 simulations of (1.6) were computed,
starting with random initial conditions. The simulation was ran until the it converged to an equilibrium state. Each subfigure
has caption N,E(#) where N is the number of particles, E is the energy (1.5) at the equilibrium, and # is the number of times
(out of a total 100) the simulation converged to it. Blue equilibria correspond to lattice equilibria whereas cyan correspond to
non-lattice (“irregular”) equilibria.

where arithmetic is taken modN. Not all choices of a, b, c, d generate distinct N points, and many different choices
can generate the same set. We call this set a lattice of size N if the size of L̃ is exactly N.

From an integer lattice of N points, we obtain a regular lattice inside the rectangle Ω by simply scaling the sides
appropriately:

L =

{(
x
L

N
, y
H

N

)
: (x, y) ∈ L̃

}
= {v1j1 + v2j2 (modΩ) : (j1, j2) ∈ Zn1

× Zn2
}, v1 = (aL, bH)

1

n1
, v2 = (cL, dH)

1

n2
(1.8)

Figure 1 illustrates some examples of such lattices. A special case is when n2 = 1, in which case this lattice is
generated by a single vector (v2 = 0).
A key property of any lattice is that if any two points p, q ∈ L, then the reflection of q with respect to p, namely,
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qR = p − (q − p) (modΩ) is also in L. This, together with the fact that G(z) = G(−z), implies that any lattice is
automatically an equilibrium of the gradient flow (1.6).

The number of integer lattices of size N has been enumerated in [15]; it is shown there that up to rotations and
reflections, the number of such lattices with N points is given by the generating function

∞∑
m=1

[
1

(1− tm) (1− t4m)
− 1

]
(1.9)

(sequence https://oeis.org/A145393 in OEIS). For example, up to rotations and reflections, there are exactly 21
distinct such lattices when N = 24; these are shown in Appendix B. However most of these lattices are saddle points,
not local minima of the energy (1.5). Here, we address the question of stability of these lattices with respect to the
gradient flow (1.6). Local minima correspond to the stable equilibria of the gradient flow (1.6).

Figure 2 show stable equilibria attained by the gradient flow (1.6) starting with random initial conditions and N
particles, N = 2 . . . 30. For each N we ran 100 simulations; the number of simulations converging to the particular
equilibria is shown in the figure. Blue equilibria correspond to lattice equilibria whereas cyan correspond to non-lattice
(“irregular”) equilibria. For example when N = 14, 80% of simulations converged to a lattice equilibrium and 20%
converged to an irregular equilbrium. Overall, lattice equilibria feature prominently; for many N (e.g. N = 30),
lattice equilibria are the presumed global minima.

To determine stability requires to compute 2N eigenvalues of the linearization of the flow (1.6) around its equi-
librium. In Section 2 we use Floquet-type theory to decompose this problem into N 2x2 matrices. We use this
decomposition, in conjunction with lattice enumeration, to find all of the stable lattices on a square up to N = 200.
These results are shown in Appnendix B.

Proposition 1.1. A rectangular n1 × n2 lattice generated by vectors v1 = (1, 0) L
n1

and v2 = (0, 1) H
n2

is always
unstable for any n1, n2 and any L,H.

The instabilities of a rectangular lattice (including a special case of a single row of particles) are illustrated in Figure
1(a-c).

The aspect ratio ρ = L/H of the domain also has a dramatic effect on lattice stability, and different lattices “win”
the stability race as the aspect ratio is changed; see Figure 1d-f) as well as Appendix B. Washen aspect ratio is
sufficiently small, a lattice that consists of two rows of interlaced (phase-shifted) particles is stable, but is destabilized
as the ratio is increased. This is illustrated in Figure 1(d-f). In section §3 we analyse stability of such a configuration
in the limit of large N. We show the following result.

Proposition 1.2. Consider a lattice of N spots generated by a single vector v =
(
1
2L,

1
NH

)
: ξj =

(
1
2L,

1
NH

)
j (modΩ) , j =

0 . . . N − 1, with N even. This lattice consists of two interlaced vertical stripes as illustrated in figure 1(c). Such a
lattice is stable provided that H

NL ≥ a0, where the constant a0 ≈ 0.48209 is the root of∑
j2

(−1)je−πa0j

(1− (−1)je−πa0j)
2 = 0. (1.10)

It is unstable otherwise.

An important special case is a hexagonal lattice. Such a lattice can be obtained as follows. Let n1 = n, n2 = 2n,
and consider a lattice of N = n1n2 = 2n2 particles generated by vectors

v1 =
1

n
(L, 0); v2 =

1

2n
(L,H) (1.11)

as illustrated on Figure 4. When the side ratio L/H =
√
3 (or 1/

√
3), the corresponding lattice forms a perfect

hexagonal pattern; this corresponds to the angle ∠v1v2 = 30◦ (or 60◦). We have the following result.

Proposition 1.3. Consider a lattice generated by vectors (1.11) with N = 2n2 points (refer to Figure 4). In the limit
n→ ∞, this lattice is stable when H/L or L/H ∈ (a0, a1) ≈ (0.48209, 0.7678) (angle ∠v1v2 between 25.73 and 37.52
degrees, or between 54.48 and 64.26 degrees). The threshold a0 is given by (1.10) whereas the threshold a1 ≈ 0.7678
is a root of equations (4.23, 4.24, 4.27).

Proposition 1.3 is illustrated in Figure 6 (n = 4, N = 32). Good agreement is observed, even for a relatively small
value of n = 2.

We now summirize the rest of the paper. In §2 we show how to decompose the 2N × 2N eigenspace of lattice
stability of a lattice into N 2x2 matrices. In §§3-4 we use the decomposition formulas in conjunction with Fourier
series solution of the Green’s function and various asymptotic techniques to derive Propositions 1.1, 1.2, 1.3.
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FIG. 3. (a-b): a rectangular lattice is always unstable (Proposition 1.1); the fastest destabilizing mode is shown. (c): Stability
curve for different lattices as a function of rectangle aspect ratio L/H. The plot shows λmax, the biggest eigenvalue of the
steady state corresponding to the gradient flow (1.6). The lattice is stable when λmax < 0. Inserts show different stable lattices
for different aspect ratios. For sufficiently small aspect ratio, a two-stripe equilibrium becomes stable; see Proposition 1.2.
(d): Equilibrium configurations obtained by solving the gradient flow (1.6) for aspect ratio L/H as indicated. For leftmost
frame, random initial conditions were used. For subsequent frames, initial conditions of the previous frame were used, with
small perturbations. First, third, and fifth frames are exact lattice patterns. Second and fourth are transitionary patterns.
BOTTOM ROW: Full simulations of the Schnakenberg model (1.3) with aspect ratio as given. Other parameters were taken
to be: A = 26, ε = 0.05, and with LH = 4. For leftmost frame, initial conditions consisting of 8 spots were used. Subsequent
framems were initialized using the steady state of the preceeding frame.

2. STABILITY DECOMPOSITION FOR LATTICES

We now study stability of lattice equilibria with respect to the gradient flow (1.6). Although there are a total of 2N
eigenvalues, due to the periodic nature of the lattice, the problem decomposes into N 2x2 subspaces, each represented
by a 2x2 matrix, which we now derive.

For convenience of notation, write the lattice points using a double index j = (j1, j2)
T
in compact form as

ξj = ξ(j1,j2) = vj = v1j1 + v2j2 (modΩ) . (2.12)

Here, v is the 2x2 matrix (v1|v2) and j1 is taken modn1 and j2 is taken modn2. We then write the gradient flow (1.6)
as

x′k =
∑
j ̸=k

G1(xj − xk, yj − yk)

y′k =
∑
j ̸=k

G2(xj − xk, yj − yk).

Here, the indices represent vectors k = (k1, k2)
T
and j = (j1, j2)

T ∈ Zn1×n2
, and

∑
is the double sum having n1n2−1

terms; and we denoted G1(x, y), G2(x, y)) = ∇G(x, y).
We linearize around the steady state equilibrium as follows. Let Linearize around it as:

xk(t) = vk + eλtϕk, yk(t) = vk + eλtψk,
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FIG. 4. (a) A perfect hexagonal lattice without any defects spanned by vectors (1.11) with n = 4, N = 32, with H/L = 3−1/2.
It is stable. (b) When H/L decreases below 0.4821, an instability corresponding to the mode m1 = 0,m2 = 1 emerges. The
corresponding (destabilizing) eigenvector is shown. (c) When the the H/L increases above 0.7678, an instability corresponding
to the mode m1 = n/2, m2 = 0 emerges. The corresponding eigenvector is shown. (d) Full numerical simulation of the
Schnakenberg model starting with random initial conditions. Parameters are ε = 0.024, D = 1, A = 123, L = 2.31 and
H = L/

√
3. Turing instabiliy leads to formation of 32 spots which then rearrange themselves into a perfect hexagonal lattice.

(e) Same parameters as in (d) except H/L as indicated. Initial conditions are taken to be the final state in (d). The instability
shown in figure (b) leads to a grid deformation into a wavy pattern. The resulting wavy state itself is borderline unstable
eventually leading to another regular lattice equilibrium. (f) Here H is increased to 0.78L. Initial conditions are taken to be the
final state in (d). Instability A transition to a different regular lattice is observed. See also [16] for movies of the simulations.

to obtain the eigenvalue problem

λϕk =
∑
j ̸=k

G11(v (j − k)) (ϕj − ϕk) +G12(v (j − k)) (ψj − ψk)

λψk =
∑
j ̸=k

G21(v (j − k)) (ϕj − ϕk) +G22(v (j − k)) (ψj − ψk)

The eigenspace then decomposes as follows:

ϕk = ϕ exp

(
2πi

(
m1

n1
k1 +

m2

n2
k2

))
, ψk = ψ exp

(
2πi

(
m1

n1
k1 +

m2

n2
k2

))
(2.13)

Here, m = (m1,m2) ∈ Zn1×n2
are a pair of the so-called Floquet multipiers or modes. By letting j = k + l and using
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periodicity, after some simplification we obtain a 2x2 eigenvalue problem

λ(m1,m2)

(
ϕ
ψ

)
=M

(
ϕ
ψ

)
, where Ma,b =

∑
l∈Zn1×n2

\(0,0)

Gab(vl)

(
exp

(
2πi

(
m1

n1
l1 +

m2

n2
l2

))
− 1

)
. (2.14)

Equations (2.14) yield the formula for the eigenvalues as a function of the modes m1,m2. There is a pair of zero
eigenvalues corresponding to (m1,m2) = (0, 0) . These two eigenvalues correspond to translational invariance of the
problem. Asides from this zero mode, we therefore define

λmax := max
(m1,m2) ̸=0

λm1,m2
. (2.15)

The lattice configuration is stable if and only if λmax ≤ 0. Appendix B showcases all the possible lattices, including
those that are stable and those that are not.

The entry M22 can be written in terms of M11 as follows. Note that Gyy = −Gxx+
1

LH . It then follows from (2.14)
that for any (m1,m2) ̸= (0, 0),

M22 = − N

LH
−M11. (2.16)

3. STRIPES AND RECTANGLULAR LATTICES.

In this section we derive Propositions 1.1 and 1.2.
Rectanglar lattice. We begin derivation of Proposition 1.1. A rectangular lattice with N = n1n2 points has the

form

(xj , yj) =

(
1

n1
j1L,

1

n2
j2H

)
, j = (j1, j2) ∈ Zn1 × Zn2.

To show its instability, we use the decomposition of eigenspace into 2x2 matrices M (2.14). We start with M11. Using
the Fourier expansion (A.4) for G we have,

Gxx = −2π

L2

∞∑
m=1

m cos
(
2πm

x

L

) cosh
(
(y −H/2) 2π

L m
)

sinh
(
2π
L mH/2

) . (3.17)

Consider the mode m1 = 0, m2 = n2/2 (the unstable mode shown in Figure 1(b)). Then we obtain:

M11(m) = −2π

L2

n1−1∑
j1=0

n2−1∑
j2=1

∞∑
q=1

q cos

(
2πq

1

n1
j1

) cosh
((

1
n2
j2H −H/2

)
2π
L q
)

sinh
(
2π
L qH/2

) (exp {πij2} − 1)

Note that

n1−1∑
j1=0

cos
(
2πq

xj
L

)
=

{
0, n|q
n, n ̸ |q .

Setting q = Qn1 we obtain

M11(m) = −2π

L2
n21

n2−1∑
j2=1

∞∑
Q=1

Q
cosh

((
1
n2
j2H −H/2

)
2π
L Qn1

)
sinh

(
2π
L qH/2

) (exp {πij2} − 1)

Since (exp {πij2} − 1) ≤ 0, it follows that M11 > 0. By symmetry (rotating the rectangle 90 degrees), we similarly
obtain M22 > 0. Moreover it is easy to check that M12 =M21 = 0. It follows that both eigenvalues of M are positive
for this mode. This proves the instability of a rectangular lattice.

Two stripes. We now derive the threshold in Proposition 1.2. The pattern consists of two phase-shifted stripes
and N even, as shown in Figure 1(c). It is generated by a single vector v =

(
1
2L,

1
NH

)
. (i.e. N = n1n2 with

n1 = N,n2 = 1). Numerics indicate that for a sufficiently tall rectangle, such a configuration is stable. As the aspect
ratio is increased, the mode that becomes unstable first in (2.14) corresponds to m = m1 = 1, as illustrated in Figure
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1(e). To determine the instability boundary, we must compute the associated matrix M in (2.14). We begin by
computing the entry M11. Let n = N/2. Split M11 into two parts: M11 = I1 + I2 where I1 is the sum over the left n
points (xj = 0, yj = jH/n, j = 1 . . . n) and I2 over the right (xj = L/2, yj = (j + 1/2)H/n, j = 1 . . . n). We
obtain

I1 = −2π

L2

n∑
j=1

∞∑
m=1

m
cosh

(
(j/n− 1/2) 2π

L Hm
)

sinh
(
2π
L mH/2

) (exp (2πij/n)− 1) ,

I2 = −2π

L2

n∑
j=0

∞∑
m=1

(−1)
m
m
cosh

(
((j + 1/2) /n− 1/2) 2π

L Hm
)

sinh
(
2π
L mH/2

) (exp (2πi (j + 1/2) /n)− 1) .

We start with I1. Interchange the summation and write I1 as I1 = − 2π
L2

∑∞
m=1mJ1(m) where

J1 =

n∑
j=1

cosh
(
(j/n− 1/2) 2π

L Hm
)

sinh
(
2π
L mH/2

) (exp (2πij/n)− 1) .

Define x = H2π
Ln and assume that n ≫ 1, H = O(n), so that x = O(1) (this is the critical scaling for the boundary

between stability and instability). In this case the dominant contribution to J1 comes from j near 1 and n; moreover
J1 is purely real and is symmetric with respect to j = n/2. We then estimate

cosh
(
(j/n− 1/2) 2π

L Hm
)

sinh
(
2π
L mH/2

) ∼ exp(−2xmj)

and

J1 ∼ 2

∞∑
j=1

{exp(−2xmj)} (cos (2πj/n)− 1)

∼ − (2π/n)
2

∞∑
j=1

exp(−2xmj)j2

so that

I1 ∼ 2π3

L2n2

∞∑
m=1

∞∑
j=1

m exp(−2xmj) (2j)
2

An analogous computation yields

I2 ∼ 2π3

L2n2

∞∑
m=0

∞∑
j=0

(−1)
m
m exp(−xm(2j + 1)) (2j + 1)

2
.

Combining I1 and I2 we obtain after some algebra,

M11 ∼ 2π3

L2n2


∞∑

m=1

∞∑
j=1

m (−1)
mj

exp(−xmj)j2
 ∼ 2π3

L2n2

{ ∞∑
1

j2
(−1)je−xj

(1− (−1)je−xj)
2

}
(3.18)

From (2.16) we have M22 ∼ − N
LH , and furthermore a similar computation yields M12 = M21 = 0.It follows that the

eigenvalues are given by M11 and M22. Moreover M22 is negative, so the threshold for instability corresponds to the
sign change in M11. The equation ∑

j2
(−1)je−xj

(1− (−1)je−xj)
2 = 0 (3.19)

has a unique root x = 1.51452 = Hπ
LN . It follows that the stripe is stable if H

LN ≥ a0, where a0 = x/π = 0.482 09. This
completes the derivation of Proposition 1.2.
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4. THRESHOLDS FOR HEXAGONAL LATTICE AND ITS DILATIONS

In this section we consider the stability of the lattice spanned by vectors (1.11) in the limit N = 2n2 → ∞..
Explicitly, the lattice points are

xj =
L

n

(
j1 +

j2
2

)
(modL) , yj =

H

n

j2
2
; j1 = 0 . . . n− 1, j2 = 0 . . . 2n− 1.

They forms a perfect hexagonal lattice when L/H =
√
3 or 1/

√
3. Let ρ = L/H. Numerical experiments (see Figure

4) show that this lattice is stable for a range of aspect ratios as given in Proposition 1.3. Moreover the dominant
instability at lower boundary (resp. upper) is due to the mode (m1,m2) = (0, 1), (resp. (n/2, 0)). The goal here is to
compute these thresholds.

Mode m1 = 0,m2 = 1. We start by computing M11 entry in (2.14). Using Gxx as given in (A.4) we have

M11 = −2π

L2

n−1∑
j1=0

2n−1∑
j2=1

∞∑
q=1

q cos

(
2πq

n

(
j1 +

j2
2

))
cosh

((
j2
n − 1

)
π
LqH

)
sinh

(
π
LqH

) (exp (πij2/n)− 1) .

Note that

n−1∑
j1=0

cos

(
2πq

n

(
j1 +

j2
2

))
=

{
0, n|q

n cos
(
πq
n j2

)
, n ̸ |q

so we let

q = Qn, Q = 1, 2, . . .

and we obtain

M11 = −2π

L2
n2

2n−1∑
j2=1

∞∑
Q=1

Q cos (πQj2)
cosh

((
j2
n − 1

)
π
LQnH

)
sinh

(
π
LQnH

) (
cos
(π
n
j2

)
− 1
)
. (4.20)

We further estimate

cosh
((

j2
n − 1

)
π
LQnH

)
sinh

(
π
LQnH

) ∼ exp

(
−j2πQ

H

L

)
, j2 < n

In addition the sum over j2 is symmetric (the contribution from j2 is the same as contribution from 2n − j2). It
follows that (4.20) is approximated by

M11 ∼ −4π

L2
n2

∞∑
j2=1

∞∑
Q=1

Q cos (πQj2) exp

(
−j2πQ

H

L

)(
cos
(π
n
j2

)
− 1
)
.

Finally we expand in Taylor series cos
(
π
nj2
)
− 1 ∼ −

(
π
nj2
)2
/2 to obtain

M11 ∼ 2π2

L2

∞∑
j2=1

∞∑
Q=1

Q cos (πQj2) exp

(
−j2π

H

L
Q

)
j22 .

From (2.16) we have M22 ∼ − N
LH + O(1) < 0. Moreover it is easy to verify that M12 = 0 = M12. Therefore the

threshold is computed by setting M11 = 0. We remark that this sum is equivalent to the sum appearing in (3.18),
and can be rewritten as a single sum using genometric series as done there. Assuming H/L < 1, setting M11 = 0
we obtain H

L ≈ 0.48209, which is the same constant as derived in Proposition 1.2. This is the lower threshold a0 of
Proposition 1.3.

Mode m1 = n/2, m2 = 0. To simplify the derivaiton, in what follows, we will assume that n is even. However the
final formula is also valid for odd n. We start with evaluating M11. We have:

M11 =

n1−1∑
j1=1

n2−1∑
j2=0

Gxx(xj , yj) (exp {πij1} − 1) , xj =
L

n

(
j1 +

j2
2

)
modL, yj =

H

n

j2
2
.
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It turns out that it is necessary to split this sum into j2 = 0 and j2 > 1. For j2 = 0 we will use the expression

Gxx =
1

HL
+

2π

H2

∞∑
q=1

q cos
(
2πq

y

H

) cosh
(
(x− L/2) 2π

H q
)

sinh
(
2π
H qL/2

) (4.21)

For j2 > 0, we will use instead the expression

Gxx = −2π

L2

∞∑
q=1

q cos
(
2πq

x

L

) cosh
(
(y −H/2) 2π

L q
)

sinh
(
2π
L qH/2

) . (4.22)

We then write M11 = I1 + I2, where

I1 = −2π

L2

n1−1∑
j1=1

n2−1∑
j2=1

∞∑
q=1

q cos

(
2πq

(
j1 +

j2
2

)
n

)
cosh

((
H
n

j2
2 −H/2

)
2π
L q
)

sinh
(
2π
L qH/2

) (exp {πij1} − 1)

I2 =

n−1∑
j1=1

{
1

HL
+

2π

H2

∞∑
q=1

q
cosh

((
L
n j1 − L/2

)
2π
H q
)

sinh
(
2π
H qL/2

) }
(exp {πij1} − 1) .

We start with I1. Let n̂ = n/2 Summing over j1 first, we have the following identity:

n−1∑
j1=1

cos

(
2πq

(
j1 +

j2
2

)
n

)
(exp {πij1} − 1) = −2

n̂−1∑
j=0

cos

(
2πq

n̂
j +

πq

n̂

(
1 +

j2
2

))

=

{
0, n̂ ̸ |q

−2n̂ cos
(
πq
n̂

(
1 + j2

2

))
, n̂|q

Let q = Qn̂. Then cos
(
2πq
n

(
1 + j2

2

))
= cos

(
πQ
(
1 + j2

2

))
and we obtain the asymptotics

I1 = n
2π

L2

n2−1∑
j2=1

∞∑
Q=1

Q

2
n
cosh

((
H
n

j2
2 −H/2

)
π
LQn

)
sinh

(
π
LQnH/2

) cos

(
πQ

(
1 +

j2
2

))

∼ n2
2π

L2

∞∑
j2=1

∞∑
Q=1

Q exp
(
−H π

L
jQ
)
cos

(
πQ

(
1 +

j2
2

))
.

Next we evaluate I2. Start by rewriting j1 = 2k + 1, n̂ = n/2, to obtain

I2 = −2

n̂−1∑
k=0

{
1

HL
+

2π

H2

∞∑
q=1

q
cosh

((
L
n (2k + 1)− L/2

)
2π
H q
)

sinh
(
2π
H qL/2

) }

∼ − n

HL
− 4π

H2

n̂−1∑
k=0

∞∑
q=1

q
cosh

(
aq
(
1− 2k

n̂ − 1
n̂

))
sinh (aq)

where we defined

a :=
π

H
L.

We re-sum the inner sum as follows. Suppose |b| < a. Then we have

∞∑
q=1

q
cosh (bq)

sinh (aq)
=

∞∑
q=1

q
(
ebq + e−bq

) (
1− e−2aq

)−1
e−aq

=

∞∑
p=0

∞∑
q=1

q
(
e−(2ap+a−b)q + e−(2ap+a+b)q

)
=

∞∑
p=0

e−(2ap+a−b)(
1− e−(2ap+a−b)

)2 +
e−(2ap+a+b)(

1− e−(2ap+a+b)
)2

=

∞∑
p=0

1

4 sinh2
(
ap+ a−b

2

) + 1

4 sinh2
(
ap+ a+b

2

)
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We then obtain:

n̂∑
k=0

∞∑
q=1

q
cosh

(
aq
(
1− 2k

n̂ − 1
n̂

))
sinh (aq)

=

∞∑
p=0

n̂−1∑
k=0

1

4 sinh2
(
ap+ a

(
k
n̂ + 1

2n̂

)) + 1

4 sinh2
(
ap+ a

(
1− k

n̂ − 1
2n̂

)
)
)

=

∞∑
p=0

n̂−1∑
k=0

1

2 sinh2
(
ap+ a

(
k
n̂ + 1

2n̂

))
We split the last sum into two:

=

n̂−1∑
k=0

1

2 sinh2
(
a
(
k
n̂ + 1

2n̂

)) + ∞∑
p=1

n̂−1∑
k=0

1

2 sinh2
(
ap+ a

(
k
n̂ + 1

2n̂

)) .
For p > 0 we can estimate the inner sum by an integral as follows:

n̂−1∑
k=0

1

2 sinh2
(
ap+ a

(
k
n̂ + 1

2n̂

)) ∼ n̂

2a

a∫
0

dy

sinh2 (ap+ y)

∼ n̂

2a
[coth(ap)− coth(ap+ a)] .

It follows that

∞∑
p=1

n̂−1∑
k=0

1

2 sinh2
(
ap+ a

(
k
n̂ + 1

2n̂

)) ∼ n̂

2a
[coth(a)− 1] .

For p = 0, at leading order we use series expansion sinh (z) ∼ z to we estimate, to leading order,

n̂−1∑
k=0

1

2 sinh2
(
a
(
k
n̂ + 1

2n̂

)) ∼ n2

2a2

n−1∑
0

1

(k + 1/2)2
∼ n2

2a2

∞∑
0

1

(k + 1/2)2
∼ n2

2a2
π

2
.

However we will need a two-order expansion to accurately compute the eigenvalue threshold. So we extract the
singularity to compute as follows:

n̂−1∑
k=0

1

2 sinh2
(
a
(
k
n̂ + 1

2n̂

)) ∼
n̂−1∑
k=0

1

2 sinh2
(
a
(
k
n̂ + 1

2n̂

)) − 1

2
(
a
(

k+1/2
n̂

))2 +
1

2
(
a
(

k+1/2
n̂

))2
∼ n̂2

2a2

n̂−1∑
0

1

(k + 1/2)2
+

n̂−1∫
0

1

2 sinh2
(
a
(
k
n̂ + 1

2n̂

)) − 1

2
(
a
(

k+1/2
n̂

))2
∼ n̂2

2a2

π
2
−

∞∫
n̂

dk

(k + 1/2)2

+

n̂−1∫
0

1

2 sinh2
(
a
(
k
n̂ + 1

2n̂

)) − 1

2
(
a
(

k+1/2
n̂

))2
∼ n̂2

2a2

[
π

2
− 1

(n̂+ 1/2)

]
+

1

2

n̂

a

a∫
0

(
1

sin2 y
− 1

y2

)
dy

∼ n̂2π

4a2
− 1

2

n̂

a
coth a

In summary, we obtain a two-order expansion

n/2−1∑
k=0

∞∑
q=1

q
cosh

(
aq
(
1− 2k

n̂ − 1
n̂

))
sinh (aq)

∼ n̂2π2

4a2
− n̂

2a
.



12

Putting all the parts for I2 we finally obtain I2 ∼ −πn2

4L2 .

M11 = −πn
2

4L2
+ n2

2π

L2

∞∑
j2=1

∞∑
Q=1

Q exp
(
−Hj2

π

2L
Q
)
cos

(
πQ

(
1 +

j2
2

))

From (2.16) we have M22 = − 2n2

LH −M11.The term M12 is evaluated similarly. We summize the computations as
follows. Let ρ = H/L and let

f1(ρ) =

∞∑
j=1

∞∑
Q=1

Q exp
(
−j π

2
ρQ
)
cos

(
πQ

(
1 +

j

2

))
(4.23)

f2(ρ) =

∞∑
j=1

∞∑
Q=1

Q exp
(
−j π

2
ρQ
)
sin

(
πQ

(
1 +

j

2

))
(4.24)

Then

M11 = n2
2π

L2

(
f1(ρ)−

1

8

)
M22 = n2

2π

L2

(
−f1(ρ) +

1

8
− 1

πρ

)
(4.25)

M12 = −n2 2π
L2
f2(ρ). (4.26)

In particular the threshold is obtained by setting det(M) = 0. This yields the following formula for ρ,(
f1(ρ)−

1

8

)(
−f1(ρ) +

1

8
− 1

πρ

)
− f22 (ρ) = 0 (4.27)

Solving for ρ with 0 < ρ < 1, we get ρ = H/L = 0.767837, corresponding to the angle of 37.52 degrees.

5. REACTION-DIFFUSION SYSTEMS, LARGE EIGENVALUES

Many RD systems generate spot patterns. One of the simplest is the Schnakenberg model (1.3). The analysis for
a general bounded two-dimensional domain for this and other models is well established; see for example [11, 12, 17].
Here, we will adapt the results from [1] which deals with ring-type spot patterns for the Schnakenberg model (1.3).
Most of the analysis is the same for lattice patterns, so we will not re-derive all the results, but only present the
formulas modified for the case of lattice patterns.

As is well known, there are two types of instabilities that are possible: due to large (O(1)) or small (O(ε2))
eigenvalues. Instability triggered by large eigenvalues induces a “structural” or spike profile instability on an O(1)
time scale. Small eigenvalues arise from near translation-invariance of spikes. To leading order, spot dynamics
is governed (up to time-scaling) by the gradient flow (1.6). Stable equilibria of this ODE system correspond to
equilibrium spot locations of the original model. As such, the domain shape (e.g. aspect ratio) is responsible for
destabilization of the small eigenvalues. A small-eigenvalue instability can lead to re-arrangement of the spots while
preserving the overall number of spots. This is illustrated in Figure 4(e,f); detailed analysis of this situation is given
in §4.

On the other hand, a large-eigenvalue instability, also called a competition instability, leads to a reduction in the
number of spikes. It is triggered when the feed-rate A is decreased past a certain threshold. Figure 5 illustrates this
phenomenon. We start with random initial conditions, using parameters as given in the figure. Very quickly, a spot
pattern emerges. After further self-replication, the system settles to a stable equilibrium consisting of 24 spots. This
corresponds to the stable lattice with N = 24 = 24× 1 generated by a single generator (1, 5) (see Figure 5(c)). Next,
we start to decrease A. The pattern was found to be stable when A = 40, but instability occurs when A = 39. As a
result of the instability, 8 spots are destroyed resulting in a honeycomb-type lattice. This state appears to be transient
although it persists for a rather long time: presumably the honeycomb state is a saddle critical point of the energy E.
After some time the system settles into an N = 16 stable lattice.

These competition thresholds, as well as the shape of the resulting instability, can be computed analytically in the
case of a lattice, as we now show. Equation (28) from [1] gives the formula for the competition instability thresholds
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FIG. 5. (a) Simulation of (1.3) starting with random initial conditions. The parameter values are Ω = (0, 2) × (0, 2) ; A =
90, ε = 0.04. After some complicated transient dynamics the system settles to the unique stable regular lattice pattern with
24 spots. (b) Simulation with A = 39, using final output of (a) as the initial condition. A competition instability eventually
results in a death of 8 spots and the system transitions to a honeycomp-like equilibrium of 16 spots. This equilibrium is
eventually destabilized and the final steady state is a unique stable regular lattice of 16 spots. (c) Stable 24-point regular

lattice generated by the vector (1, 5) . (d) Plot of Υ̃(m) as a function of m = (m1, 0). (e) Instability due to mode m1 = 8. Here,
ϕk = cos (2πm/N) + sin (2πm/N); black dots correspond to ϕk < 0 and red dots correspond to ϕk > 0. (f) Instability due to
mode m2 = 12.

of a ring of spots inside a disk. The derivation is identical for a lattice with small modifications. We skip the details
and just state final result here. There are a total of N − 1 instabilitity thresholds, characterized by N − 1 modes
m = (m1,m2) with m ̸= (0, 0) . These thresholds can are given, asymptoitcally, as follows.
Define

A0 =
1

log ε−1

N

|Ω|

(
2π

∫
w2

)1/2

. (5.28)

Given m = (m1,m2) ̸= (0, 0) , define

Am := A0

(
1 +

2π

log ε−1
Υ̃(m)

)−1/2

(5.29)

where

Υ̃(m) =
∑
l ̸=0

exp

{
2πi

(
m1

n1
l1 +

m2

n2
l2

)}
G(vl) +R0. (5.30)
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FIG. 6. General construction of a perfect hexagonal lattice without defects. (a) Start with a rectangle whose aspect ratio is√
3, and with two particles, one at the center another at the corner. (b) Copy the rectangle N1 times horizontally and then

N2 times vertically. The result is a perfect hexagonal lattice with N = 2N1N2 particles (here, the case of N1 = 3, N2 = 4 is
shown).

Here, R0 is the regular part of G, given by R0 = limx→0

(
G(x) + 1

2π log |x|
)
.The formula for R0 is given in Appendix

A, see (A.5). The threshold Am is the instability threshold corresponding to the mode m; it is stable if A > Am and
becomes unstable as A is decreased below Am. The overall threshold is then given by

Amax = max
m

(Am) ; (5.31)

it occurs at the minimum of Υ̃(m). The corresponding destabilizing eigenvector has the form ϕk = A cos
(
2π
N m · k

)
+

B cos
(
2π
N m · k

)
. The height of k-th spot is perturbed by ϕk, thus initiating the instability. The spots where ϕk < 0

decrease in height and those where ϕk > 0 increase in height. Because competition instability is typically subcritical
(see [18] for related analysis), it eventually this leads to death of those spots for which ϕk < 0. Moreover, the
instability-inducing eigenfunction (responsible for competition instability) corresponds to the the mode m = (m1,m2)

which minimizes Υ̃(m). In other words, spot heights uk = u (xk) at the lattice locations xk = vk are perturbed by an
amount proportional to ϕk.
Figure 5 provides a test case of the theory. The steady state here consists of 24 spots arranged on a regular

lattice of the form (1.7) with v1 = (1, 5), v2 = 0. The function Υ̃ (m) is shown in Figure 5(d) and we find that

minm Υ̃(m) = −0.2218; the minimizing mode is m = (12, 0). To leading order, the instability threshold (5.28) does
not depend on this perturbation; we find its numerical value to be A0 ≈ 26.0. More precise value of Amax ≈ 34.6
incorporates the modes m. Full simulations of the PDE (1.3) show that the actual onset of the instability happens
at around A ≈ 39; this is reasonably close to the predicted value of Amax. However the instability that is triggered
appears to to correspond to the mode m = (8, 0), not (12, 0). In fact, Υ̃(8, 0) = −0.2211, only 0.3% above the
minimum of −0.2218.

6. DISCUSSION

Regular lattice patterns are prevalent in many pattern-forming systems. We have presented detailed analysis
of classification and stability of such patterns on periodic rectangular domains. We used explicit computations of
the aassociated Green’s function as well as numerical experiments to explcitly characterize stability boundaries of
hexagonal-type patterns, as the domain is stretched or compressed. There are many open questions that remain.

When the rectangle is a square, explicit classification showed that there is no stable lattice when N = 6, 7, 13, 21...
It would be interesting to study the shape of the minimizer of (1.5) in these cases, even with N = 6. It is also an open
question whether these gaps persist even for larger N.
We showed that a specific hexagonal lattice in Proposition 1.3 is stable. This construction can be generalized as

follows. Start with a rectangle with aspect ratio of l, h containing exactly 2 particles: one at the center and one at the
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corner. Make N1 copies horizontally. Then make N2 copies vertically, as illustrated in Figure 6 with N1 = 3, N2 = 4.
The resulting rectangle has N = 2N1N2 particles and the aspect ratio of lN1

hN2
. The resulting lattice is a perfect

hexagonal lattice when l/h =
√
3. We verified numerically that this lattice is stable for all N1, N2 up to 10. In fact

we conjecture that it is stable in the limit N1, N2 → ∞ as long as h/l ∈ (a0, a1) as in Proposition 1.3.
Numerical optimization and gradient flow experiments shows that stable regular lattices are often global minimizers.

Further experimentation suggests that whenever there is an admissable hexagonal lattice without any defects (such
as constructed above), it will be a global minimum. We propose this as a conjecture.

Conjecture. Given two integers N1, N2, suppose that N = 2N1N2, and L/H =
√
3N1/N2. Then the global

minimizer of (1.5) is a perfect hexagonal lattice such as shown in Figure 6.
It would be interesting to see how changing the pairwise function G changes the results. For example, many

reaction-diffusion systems require the Green’s function with decay, ∆G−G+ δ(x) = 0. Another generalization is to
use a fractional Laplacian. While the spectral decomposition in §2 is generic (independent on the specific form of G),
the stability of lattices for different aspect ratios will change. It would be interesting to use the framework in this
paper to generalize our results to these cases.

Appendix A: Periodic Green’s function

The periodic Green’s function G on the rectangle Ω = (0, L)× (0, H) satisfies

Gxx +Gyy −
1

LH
+ δ(x)δ(y) = 0, G periodic on Ω,

∫∫
Ω

G = 0.

Expand:

G =
u0(x)

2
+

∞∑
m=1

cos

(
y
2π

H
m

)
um(x); (A.1)

δ(x)δ(y) = δ(x)

(
1

H
+

∞∑
m=1

cos

(
y
2π

H
m

)
2

H

)
; (A.2)

Then um, m > 0 satisfies:

(um)xx − α2
mum +

2

H
δ(x) = 0; αm =

2π

H
m;

whose solution is given by

um(x) =
cosh ((x− L/2)αm)

Hα sinh (αL/2)
,

whereas u0 satisfies

u0xx − 2

LH
+

2

H
δ(x) = 0

so that u0 = 1
HL (x− L/2)

2
+ C; C is an integration constant, chosen to make

∫∫
Ω
G = 0, that is, LC =

− 1
HL

∫ L

0
(x− L/2)

2
dx. In summary, we obtain

G = − L

24H
+

1

2HL
(x− L/2)

2
+

∞∑
m=1

cos
(
2πm

y

H

) cosh
(
(x− L/2) 2π

H m
)

2πm sinh
(
π
HmL

) (A.3)

= − H

24L
+

1

2HL
(y −H/2)

2
+

∞∑
m=1

cos
(
2πm

x

L

) cosh
(
(y −H/2) 2π

L m
)

2πm sinh
(
π
LmH

) . (A.4)

Formula (A.4) is obtained due to symmetry in exchaning x ↔ y, L ↔ H. Formula (A.3) is convergent for x ̸= 0
whereas (A.4) is convergent for y ̸= 0, and both are used in our analysis.
Finally, section 5 requires the regular part of the Green’s function. This is defined as

R(x, y) = G(x, y) +
1

2π
log
√
x2 + y2
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and in particular we need R0 = lim(x,y)→(0,0)R(x, y). This computation involves a resummation trick. We refer the
reader to formulas (4.14) from [17], where this expression is derived for a rectangle with Neumann boundary coditions.
The periodic case is a special case of (4.14) where the source is taken to be the center of the rectangle. After some
algebra, formula (4.14) from [17] then simplifies to

R0 =
H

12L
− 1

2π
log

(
2π

L

)
− 1

π

∞∑
n=1

log

(
1− exp

(
−2πH

L
n

))
. (A.5)

Appendix B: Catalogue of integer lattices and their stability

The number of distinct integer lattices on a square has a generating function (1.9) which was derived in [15]. To
study lattice stability we actually need to construct them first. Here, we describe an algorithm to do this. It is
implemented in Matlab program which is available from the authors [16]. Before describing an algorithm, we give
some definitions and theory.

Define a lattice generated by a single generator (a, b) to be the lattice {(a, b)j (modN), j ∈ ZN}. We call such
a generator (or lattice) N−admissable if there are exactly N distinct values in this set. For example, the generator
(4,6) is 9-admissable but is not 10-admissable (since 4× 5, 6× 5 ≡ 0(mod 10)).

Similary a lattice generated by a double generator (a, b) , (c, d) is given by (1.7); it is N−admissable if it has size
N. The key observation is that for a double-generator lattice to be admissable, (a, b) must be a single-generator n1-
admissable and (c, d) must be a single-generator n2-admissable. This reduces the complexity of generating all possible
lattices significantly.

We call two sets of generators isomorphic if they generate identical lattices. Besides the algebraic isomorphism,
there is also a geometric equivalence. For a square, we define two lattices to be equivalent if one can be obtained from
the other by either rotation by 90 degrees or a flip; otherwise call them non-equivalent (for a non-square rectangle, only
rotation by 180 degrees and flips are allowed). Each single generator can generate up to four different but equivalent
square lattices: (a, b) , (b, a), (a,−b) and (−a, b) .
The algorithm to generate all non-equivalent lattices is as follows.

� For each distinct factorization N = n1n2 :

– Generate all non-isomorphic single-generator lattices of sizes n1 and n2.

– Generate all double-generator lattices of the form (a, b) , (c, d) where (a, b) is n1-admissable and (c, d) is
n2-admissable single-generator lattice.

� Select non-equivalent lattices from the resulting list.

To generate all single-generator lattices, we use the following facts. Signle-generators v = (a, b) and w = (c, d) are
isomorphic if and only if (a, b) = x(c, d) for some invertible element x ∈ ZN . In particular, if c is invertible, then
(a, b) is isomorphic to

(
1, a−1b

)
. When N is a prime, any signle-generator is isomorphic to either (1, x) for some x, or

to (0, 1) . The following fact further reduces the search space: a single generator (a, b) is N−admissable if and only if
gcd(a, b,N) = 1.

The last step requires an equivalence/isomorphism checking for a list of lattices. To do so, for each lattice in the list,
we create a unique signture as follows. First, generate a list all point for each lattice as well as admissable geometric
reflections/flips (four lists in total for each lattice in case of a square, two lists for a rectangle). Convert each list to
a string that consists of points sorted by by their x-coordinates followed by their y-coordinates. Sort the resulting
strings and pick the first one. This will correspond to the lattice signature. Finally, uniquefy the list according to
lattice signatures.

Table of all lattices up to N = 200

The following table summarizes the overall number of non-equivalent lattices on a square, as well as the number of
stable lattices up to N = 200.
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N #all #stable N #all #stable N #all #stable N #all #stable N #all #stable

1 1 1 41 12 0 81 33 3 121 35 2 161 50 3
2 2 1 42 28 2 82 34 2 122 49 2 162 96 6
3 2 1 43 12 1 83 22 1 123 44 2 163 42 3
4 4 1 44 25 0 84 64 3 124 60 3 164 78 4
5 3 1 45 23 3 85 30 1 125 42 2 165 76 5
6 5 0 46 20 1 86 35 3 126 84 4 166 65 2
7 3 0 47 13 1 87 32 1 127 33 3 167 43 2
8 7 1 48 39 2 88 51 2 128 71 3 168 132 6
9 5 1 49 16 1 89 24 0 129 46 2 169 48 2
10 7 1 50 27 2 90 65 5 130 68 2 170 86 5
11 4 1 51 20 0 91 30 2 131 34 3 171 68 0
12 11 1 52 29 2 92 46 1 132 92 5 172 81 4
13 5 0 53 15 2 93 34 2 133 42 1 173 45 3
14 8 1 54 34 1 94 38 3 134 53 3 174 94 4
15 8 1 55 20 0 95 32 2 135 64 3 175 65 5
16 12 1 56 36 2 96 73 3 136 74 3 176 101 6
17 6 1 57 22 1 97 26 1 137 36 3 177 62 4
18 13 1 58 25 1 98 46 2 138 76 4 178 70 3
19 6 1 59 16 2 99 42 2 139 36 3 179 46 2
20 15 1 60 50 3 100 61 4 140 92 6 180 149 7
21 10 0 61 17 1 101 27 1 141 50 3 181 47 2
22 11 1 62 26 1 102 58 2 142 56 2 182 88 5
23 7 1 63 29 3 103 27 1 143 44 3 183 64 3
24 21 2 64 38 4 104 59 3 144 113 8 184 96 3
25 10 1 65 24 0 105 52 2 145 48 0 185 60 4
26 13 0 66 40 2 106 43 4 146 58 2 186 100 6
27 12 1 67 18 1 107 28 1 147 60 2 187 56 4
28 18 2 68 36 3 108 78 3 148 71 5 188 88 4
29 9 0 69 26 2 109 29 1 149 39 4 189 84 5
30 22 2 70 40 3 110 58 4 150 99 4 190 94 6
31 9 0 71 19 0 111 40 2 151 39 3 191 49 2
32 21 1 72 58 4 112 70 2 152 81 2 192 139 6
33 14 1 73 20 1 113 30 2 153 62 5 193 50 1
34 16 1 74 31 1 114 64 4 154 76 5 194 76 4
35 14 2 75 34 2 115 38 3 155 50 1 195 88 5
36 29 2 76 39 3 116 57 3 156 106 6 196 106 7
37 11 0 77 26 3 117 49 6 157 41 2 197 51 0
38 17 2 78 46 1 118 47 1 158 62 2 198 123 5
39 16 2 79 21 1 119 38 0 159 56 3 199 51 2
40 29 2 80 55 3 120 102 8 160 105 4 200 126 6

Lattice gallery.

Here we show all non-equivalent lattices for a unit square, for small values of N up to 30. The title shows the basis of
each lattice. A single-basis lattice is shown as N : (ab), meaning all points of the form (a, b) j

N (mod 1), j = 0 . . . N −1.

A double-basis lattice is shown as n1 × n2 : (ab), (c, d) meaning all points of the form (a, b) j1
n1

+ (c, d) j2
n2

(mod 1), j1 =
0 . . . n1 − 1, j2 = 0 . . . n2 − 1.

The subtitle E, λmax shows the energy E =
∑∑

k ̸=j G(xk, xj), as well λmax, the maximum nonzero eigenvalue of
the negative of the hessian of E. A lattice is stable if λmax is negative. For each N , the lattices are sorted by their
energy, from minimum to maximum. Stable lattices are shown in blue; unstable in orange.

N=2
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2: (1 1)
-0.055159; -0.9994

2: (1 0)
-0.027579; 1.189

N=3
3: (1 1)

-0.11797; -0.2085
3: (1 0)

-0.013169; 3.32

N=4
4: (1 2)

-0.22301; -0.1863

2x2: (1 0), (0 1)
-0.22064; 0.1892

4: (1 1)
-0.16548; 2.371

4: (1 0)
0.057537; 8.565

N=5
5: (1 2)

-0.32019; -0.8626
5: (1 1)

-0.19147; 4.481
5: (1 0)

0.19147; 13.85

N=6
6: (1 2)

-0.42348; 0.1533
6: (1 3)

-0.40141; 1.075

6: (2 3)
-0.40126; 1.198

6: (1 1)
-0.19181; 8.125

6: (1 0)
0.39271; 22.27
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N=7
7: (1 2)

-0.52106; 0.5503
7: (1 1)

-0.16382; 11.84
7: (1 0)

0.66396; 30.7

N=8
8: (1 3)

-0.66666; -0.3769
4x2: (1 1), (0 1)

-0.66191; 0.3747

8: (1 2)
-0.61388; 1.758

8: (1 4)
-0.5516; 4.565

4x2: (1 0), (0 1)
-0.55159; 4.753

8: (1 1)
-0.10556; 17.15

8: (1 0)
1.0071; 42.27

N=9
9: (1 3)

-0.79085; -0.1575

3x3: (1 0), (0 1)
-0.78682; 0.3209

9: (1 2)
-0.70001; 3.433

9: (1 1)
-0.015614; 22.42

9: (1 0)
1.4237; 53.83

N=10
10: (1 3)

-0.91617; -0.3706

10: (1 4)
-0.90377; 0.8511

10: (1 2)
-0.77827; 5.948

10: (1 5)
-0.65873; 8.962

10: (2 5)
-0.65873; 8.974

10: (1 1)
0.10714; 29.27

10: (1 0)
1.9147; 68.54

N=11
11: (1 3)

-1.0492; -0.4834
11: (1 2)

-0.84787; 7.948

11: (1 1)
0.26359; 36.12

11: (1 0)
2.4811; 83.25
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N=12
12: (2 3)

-1.1946; -0.7655

12: (1 3)
-1.1779; 0.2906

12: (1 4)
-1.1609; 1.001

12: (3 4)
-1.1603; 2.066

6x2: (1 1), (0 1)
-1.1338; 2.209

12: (1 5)
-1.1335; 2.392

12: (1 2)
-0.90804; 10.54

12: (1 6)
-0.71458; 16.27

6x2: (1 0), (0 1)
-0.71458; 16.29

12: (1 1)
0.45447; 44.54

12: (1 0)
3.1235; 101.1

N=13
13: (1 5)

-1.3267; 0.03794

13: (1 3)
-1.3033; 1.067

13: (1 2)
-0.95818; 13.35

13: (1 1)
0.68037; 52.97

13: (1 0)
3.8427; 118.9

N=14
14: (1 4)

-1.4726; -0.6849
14: (1 3)

-1.4282; 2.652

14: (1 6)
-1.3485; 5.022

14: (1 2)
-0.99778; 16.8

14: (1 7)
-0.71375; 23.71

14: (2 7)
-0.71375; 23.71

14: (1 1)
0.94181; 62.96

14: (1 0)
4.639; 139.9
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N=15
15: (1 4)

-1.6287; -0.6649
15: (1 6)

-1.6098; 0.6907

15: (1 3)
-1.5504; 2.908

15: (1 5)
-1.509; 4.736

15: (3 5)
-1.5089; 4.987

15: (1 2)
-1.0264; 20.19

15: (1 1)
1.2392; 72.96

15: (1 0)
5.513; 160.9

N=16
8x2: (1 2), (0 1)
-1.7746; -0.3244

16: (1 4)
-1.7699; 0.03227

4x4: (1 0), (0 1)
-1.7651; 0.7451

16: (1 6)
-1.7476; 1.792

16: (1 3)
-1.669; 4.394

16: (1 7)
-1.5445; 9.114

8x2: (1 1), (0 1)
-1.5444; 9.521

16: (1 2)
-1.0437; 24.25

8x2: (1 0), (0 1)
-0.6524; 34.27

16: (1 8)
-0.6524; 34.27

16: (1 1)
1.573; 84.58

16: (1 0)
6.4651; 185.1

N=17
17: (1 4)

-1.9164; -0.08451

17: (1 5)
-1.8857; 1.034

17: (1 3)
-1.7845; 5.946

17: (1 2)
-1.0492; 28.24

17: (1 1)
1.9435; 96.09

17: (1 0)
7.4954; 209.2



22

N=18
18: (1 5)

-2.0781; -0.3015

18: (1 4)
-2.0719; 0.5376

6x3: (1 1), (0 1)
-2.0701; 0.639

18: (2 3)
-2.0196; 2.98

18: (1 3)
-1.8964; 7.245

18: (1 6)
-1.8219; 10.37

6x3: (1 0), (0 1)
-1.8219; 10.69

18: (1 8)
-1.7187; 13.63

18: (1 2)
-1.0428; 32.89

18: (2 9)
-0.52766; 44.84

18: (1 9)
-0.52766; 44.83

18: (1 1)
2.3509; 109.2

18: (1 0)
8.6045; 236.5

N=19
19: (1 4)

-2.2252; -0.107

19: (1 7)
-2.1532; 3.773

19: (1 3)
-2.0044; 9.386

19: (1 2)
-1.0242; 37.55

19: (1 1)
2.7956; 122.4

19: (1 0)
9.7924; 263.7

N=20
20: (1 8)

-2.3958; -0.7156
10x2: (1 2), (0 1)
-2.3839; 0.9476

20: (1 4)
-2.3727; 0.9518

20: (2 5)
-2.3604; 0.9689

20: (1 5)
-2.3591;  1.7

20: (4 5)
-2.3579; 2.429

20: (1 6)
-2.284; 5.097

20: (1 3)
-2.1081; 11.88

10x2: (1 1), (0 1)
-1.8691; 19.27

20: (1 9)
-1.869; 19.26

20: (1 2)
-0.99307; 42.84

20: (1 10)
-0.33731; 58.54

10x2: (1 0), (0 1)
-0.33731; 58.55

20: (1 1)
3.2778; 137.1

20: (1 0)
11.06; 294.2
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N=21
21: (1 8)

-2.5353; 0.4821

21: (1 6)
-2.532; 1.086

21: (1 4)
-2.5195; 1.43

21: (1 9)
-2.4123; 6.087

21: (1 3)
-2.2076; 13.76

21: (1 7)
-2.0915; 16.93

21: (3 7)
-2.0915; 16.99

21: (1 2)
-0.94925; 48.12

21: (1 1)
3.7976; 151.8

21: (1 0)
12.406; 324.6

N=22
22: (1 5)

-2.7052; -0.1743

22: (1 6)
-2.703; 0.5395

22: (1 4)
-2.6679; 2.498

22: (1 8)
-2.5383; 7.413

22: (1 3)
-2.3025; 15.93

22: (1 10)
-1.9936; 25.14

22: (1 2)
-0.89257; 54.03

22: (2 11)
-0.079563; 72.25

22: (1 11)
-0.079563; 72.25

22: (1 1)
4.3554;  168

22: (1 0)
13.832; 358.1

N=23
23: (1 5)

-2.8871; -0.8394

23: (1 4)
-2.8153; 2.436

23: (1 7)
-2.6612; 9.195

23: (1 3)
-2.3927; 18.34

23: (1 2)
-0.82283; 59.95

23: (1 1)
4.9511; 184.3

23: (1 0)
15.338; 391.7
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N=24
24: (1 5)

-3.0511; -0.3301

24: (3 4)
-3.0447; -0.06704

12x2: (1 2), (0 1)
-3.0177; 0.5999

24: (1 10)
-3.0144; 2.317

24: (1 9)
-2.9838; 2.006

24: (1 7)
-2.9825; 4.138

24: (1 4)
-2.9598; 3.91

12x2: (1 3), (0 1)
-2.9295; 4.419

24: (1 6)
-2.9292; 5.318

12x2: (2 3), (1 0)
-2.9289; 6.289

24: (2 3)
-2.7813; 10.92

24: (1 3)
-2.478; 21.08

24: (1 8)
-2.3119; 26.29

24: (3 8)
-2.3119; 26.36

24: (1 11)
-2.0911; 32.55

12x2: (1 1), (0 1)
-2.0911; 32.59

24: (1 2)
-0.73989; 66.48

12x2: (1 0), (0 1)
0.24702; 89.1

24: (1 12)
0.24702; 89.1

24: (1 1)
5.5851; 202.2

24: (1 0)
16.923; 428.4

N=25
25: (1 10)

-3.2153; -0.2049

25: (1 5)
-3.207; 0.3679

5x5: (1 0), (0 1)
-3.2019; 1.069

25: (1 7)
-3.2019; 0.4053

25: (1 4)
-3.1025; 5.31

25: (1 9)
-2.8983; 12.67

25: (1 3)
-2.5583; 23.98

25: (1 2)
-0.6436; 73.02

25: (1 1)
6.2575;  220

25: (1 0)
18.589; 465.1

N=26
26: (1 10)

-3.3767; 0.2446

26: (1 5)
-3.3705; 0.08597

26: (1 6)
-3.3256; 2.229

26: (1 7)
-3.3237; 3.434

26: (1 4)
-3.2441; 7.145

26: (1 8)
-3.012; 15.45

26: (1 3)
-2.6334; 27.19

26: (1 12)
-2.1601; 39.99

26: (1 2)
-0.53382; 80.19

26: (1 13)
0.64367; 105.9

26: (2 13)
0.64367; 105.9

26: (1 1)
6.9683; 239.4

26: (1 0)
20.335; 504.9
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N=27
27: (1 6)

-3.5459; -0.02064

27: (1 5)
-3.5438; 0.4978

9x3: (1 1), (0 1)
-3.4222; 5.454

27: (1 8)
-3.4217; 6.523

27: (1 4)
-3.3841; 7.452

27: (1 12)
-3.1224; 17.14

27: (1 3)
-2.7033; 30.23

27: (1 9)
-2.479; 35.87

9x3: (1 0), (0 1)
-2.479; 35.89

27: (1 2)
-0.41044; 87.35

27: (1 1)
7.7177; 258.9

27: (1 0)
22.161; 544.8

N=28
28: (1 6)

-3.7307; -0.8483

28: (1 5)
-3.7174; -0.188

28: (1 8)
-3.7049; 1.889

28: (1 12)
-3.6291; 4.103

14x2: (1 2), (0 1)
-3.6287; 5.31

28: (1 4)
-3.5218; 8.495

28: (2 7)
-3.4692; 10.58

28: (1 7)
-3.4692; 10.9

28: (4 7)
-3.4691; 11.21

28: (1 10)
-3.2293; 19.47

28: (1 3)
-2.7678; 33.58

14x2: (1 1), (0 1)
-2.1997; 48.97

28: (1 13)
-2.1997; 48.96

28: (1 2)
-0.27334; 95.14

14x2: (1 0), (0 1)
1.1114; 125.9

28: (1 14)
1.1114; 125.9

28: (1 1)
8.5058; 279.8

28: (1 0)
24.067; 587.8

N=29
29: (1 12)

-3.8854; 1.049

29: (1 5)
-3.8843; 0.115

29: (1 8)
-3.8697; 1.923

29: (1 4)
-3.6574; 10.55

29: (1 9)
-3.3327; 21.66

29: (1 3)
-2.8268; 36.96

29: (1 2)
-0.12242;  103

29: (1 1)
9.3328; 300.8

29: (1 0)
26.054; 630.7
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N=30
30: (3 5)

-4.0847; -0.8149

30: (2 5)
-4.0723; -0.4116

30: (1 5)
-4.0469; 1.91

30: (1 12)
-4.0385; 1.172

30: (2 9)
-4.0385; 1.13

30: (1 6)
-4.0357; 2.028

30: (5 6)
-4.0339; 3.382

30: (1 7)
-3.9282; 5.804

30: (1 8)
-3.9274; 7.259

30: (1 9)
-3.8453; 10.15

30: (1 11)
-3.8451; 10.08

30: (1 4)
-3.7909; 12.3

30: (2 3)
-3.4324; 24.42

30: (1 3)
-2.8802; 40.63

30: (1 10)
-2.5893; 48.55

30: (3 10)
-2.5893; 48.55

30: (1 14)
-2.2091; 57.97

30: (1 2)
0.042423; 111.4

30: (2 15)
1.6511; 145.9

30: (1 15)
1.6511; 145.9

30: (1 1)
10.199; 323.4

30: (1 0)
28.121; 676.9
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Appendix C: Stability of lattices as a function of aspect ratio

The effect of aspect ratio on stability of various lattices is illustrated in figures below. For N as indicated, the left
figure enumerates all non-equivalent lattices for a rectangle. These are superset of non-equivalent lattices on a square.
For example for N = 8, lattices number 5 and 6 are equivalent for a square but not equivalent for a rectangle (the
total number of non-equivalent lattices on a rectangle is given by sequence https://oeis.org/A069734 in OEIS). Figure
on the right shows the stability of each of the lattices as a function of aspect ratio L/H. Without loss of generality
(by interchanging L and H) we took the aspect ratio to be between 0 and 1. Black squares indicate stable regime,
white unstable regime.

N=8

N=13
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