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Abstract We consider a compromise model in one dimension in which pairs of agents
interact through first-order dynamics that involve both attraction and repulsion. In the case
of all-to-all coupling of agents, this system has a lowest energy state in which half of the
agents agree upon one value and the other half agree upon a different value. The purpose of
this paper is to study the behavior of this compromise model when the interaction between
the N agents occurs according to an Erdős-Rényi random graph G(N,p). We study the
effect of changing p on the stability of the compromised state, and derive both rigorous
and asymptotic results suggesting that the stability is preserved for probabilities greater than
pc = O(

logN

N
). In other words, relatively few interactions are needed to preserve stability of

the state. The results rely on basic probability arguments and the theory of eigenvalues of
random matrices.

Keywords Swarm equilibria · Biological aggregations · Random graphs

1 Introduction

Swarming is an ubiquitous natural phenomenon which occurs at all levels of animal king-
dom, from bacterial colonies to schools of fish and human crowds. One of the simplest ways
to reproduce swarming mathematically is an aggregation model. In this model, each indi-
vidual is modelled by a particle that typically interacts with all other particles according to
a specified potential function. Typically it is assumed that the particles repel each other at
short distances and attract each other at longer distances. In many cases this leads to the for-
mation of swarms. This model and its variants are also often used in robotics literature [13,
14]. As has been observed recently in the literature, the behavior of the interaction potential
can lead to highly complex patterns [20, 32, 34, 35]. Most notably we find that the potential
can be classified as one in which the system is “confining” in the large N limit (where N

is the number of particles) or non-confining. For second-order systems the language used is
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H-stability vs. catastrophic to describe the energy per particle in the limit of large N [6, 10].
For this paper we are interested in the confining case such that the N → ∞ limit has stable
solutions that are confined to some finite region, typically approximating a continuum den-
sity (possibly concentrated as a measure). The paper focuses specifically on a simple model
in one dimension in which the stable solution has two clusters of points regardless of the
number of agents or the underlying interaction structure.

In practice, and especially for large system sizes, the assumption of all-to-all interac-
tion is often unrealistic. In robotics, for instance, all-to-all communication can prove pro-
hibitively expensive for a large number of robots. Related models also frequently demand
a theoretical understanding how a (possibly dynamic) random network interaction structure
affects well-understood, deterministic behaviors such as phase transitions [1], consensus and
synchronization [26, 31], and the emergence of collective behavior in locust swarms [18].
Thus it is quite relevant to understand the stability of such system properties in the presence
of a relatively sparse network or a random interaction topology. In this paper we study what
happens to the system when the assumption of all-to-all communication is relaxed. Specifi-
cally, we consider the aggregation model on a network, where the particles are represented
by vertices on a graph that interact only if there is an edge between them. The basic particle
model then becomes

dxi

dt
= 1

N

N∑

k=1

eijF
(|xi − xj |

) xi − xj

|xi − xj | , i = 1 . . .N. (1)

We take F(r) to be a repulsive-attractive force, i.e. positive for small r and negative for
large r . The coefficients eij encode the connectivity between the particles xi and xj , so that
eij = 1 if the vertices i and j interact and zero otherwise. We assume that eij = eji , so that
the underlying graph is undirected, and in addition that F(0) = 0 so that the repulsion is
“weak” at the origin. An example of a simple continuous force satisfying these conditions is

F(r) = min(κr,1 − r), κ > 0. (2)

For such a force, it was shown in [12, 19, 32] that in the case of a fully connected graph, the
equilibrium state can consist of several clusters. For two clusters, this equilibrium is simply

x1 . . . xn = −1/2, xn+1 . . . xN = 1/2, n = N/2. (3)

An example of the evolution to such an equilibrium is shown in the top-left corner of Fig. 1.
We refer to this system as a compromise model because the agents in each group prefer

to remain a fixed distance away from all other agents; however, their attraction to the other
group forces them to coexist at the same location with half of the total agents. Under all-to-
all interactions, this particular steady state is stable provided that 0 < κ < 1. The main issue
that concerns us is how the lack of full connectivity affects the stability of this two-cluster
solution. As a simple model in this direction, we consider an Erdős-Rényi random graph
model G(N,p) for the interaction structure, for which

eij =
{

1 with probability p,

0 with probability q = 1 − p,
(4)

and investigate how the stability of this equilibrium changes as p decreases. It is well-
known that such a random graph G(N,p) undergoes a phase transition from connectedness
to disconnectedness when p = logN/N . Roughly speaking, for the critical scaling p =
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Fig. 1 Dynamics of the aggregation model (1) for a p-random graph (i.e. with eij given by (4)) for a range
of different p with N = 150 and κ = 0.5. The y-axis denotes time

p0
logN

N
and in the limit of large N , the graph is disconnected with high probability provided

that p0 < 1 and is connected when p0 > 1. While the connectivity of the underlying graph
is a necessary condition for the stability of the two-cluster steady state, as we shall show it
is certainly not sufficient.

Figure 1 illustrates how the fully non-linear dynamics change as p is decreased. In each
simulation, and in the entirety of the analysis to follow, we first draw a random graph from
G(N,p) to determine the interaction structure eij and then solve the deterministic ODEs (1)
numerically. That is, the edges eij are random initially but remain fixed in time. Note that the
long-time dynamics and equilibrium remain the same as the fully connected case, even for
relatively small p. When p becomes too small (around p ≈ 0.3 for parameters of Fig. 1),
the system undergoes a phase change and the two-cluster steady state appears to lose its
stability. This observation naturally leads to the following question: how small (resp. big)
can we take p and still guarantee stability (resp. instability) of the two-cluster steady state?
To formulate this question more precisely, we focus on linear stability theory as N → ∞. As
a result of translation invariance of the steady state, the linearized problem always has at least
one zero eigenvalue. We shall therefore call the two-cluster solution stable asymptotically
almost surely if the probability that all remaining eigenvalues are negative tends to one as
N → ∞. Similarly, we call the two-cluster solution unstable asymptotically almost surely
if the probability that one of the remaining eigenvalues is non-negative tends to one as
N → ∞.

The main results of the paper follow from a linear stability analysis of the equilibrium
solution (3). We write the N ×N adjacency matrix E of the random graph in terms of n×n

blocks,

E =
(

A B

Bt C

)
,
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to emphasize the distinction between the two groups. Evaluating the Jacobian of (1) at
the equilibrium (3) leads to the linearized system for Φ = (Φ1, . . . ,Φn)

t ∈ R
n and Ψ =

(Ψ1, . . . ,Ψn)
t ∈ R

n

{
λΦi = ∑n

j=1 κaij (Φi − Φj) + ∑n

j=1 bij (Ψj − Φi),

λΨi = ∑n

j=1 bji(Ψj − Ψi) + ∑n

j=1 κcij (Ψi − Ψj).
(5)

We can re-write this in the form

λ

(
Φ

Ψ

)
= L

(
Φ

Ψ

)

where L denotes the N × N matrix

L = κ

(
DA − A 0

0 DC − C

)
−

(
DB − B

−Bt DBt

)
:= κL1 − L2. (6)

Here, DA (respectively, DB,DC ) denotes the n × n diagonal matrix formed from row sums
of A, i.e.

(DA)ii =
n∑

j=1

aij .

The matrices L1 and L2 therefore equal the graph Laplacians formed from two subgraphs
of E; the first subgraph contains only those edges that do not connect the two groups and
the second subgraph contains only those edges that do connect the two groups. We can
therefore interpret the original eigenvalue problem for L as a difference of positive semi-
definite Laplacian matrices.

Our main goal is to characterize the stability regime and transition to instability for the
two-cluster steady state. Our approach is two-fold. On one hand, we will apply rigorous
estimates using random matrix theory to derive rigorous bounds on the transition regime. On
the other hand, we will use some heuristic arguments, combined with formal asymptotics
and extensive numerics to derive sharp estimates for the transition regime. We summarize
our rigorous result as follows.

Theorem 1.1 (Rigorous bounds for stability) Define F by (2) for 0 < κ < 1 and let eij

denote the N × N adjacency matrix of an Erdős-Rényi random graph G(N,p). If

p ≥ ε
log3/2 N

N
(7)

for some ε > 0 then the steady state (3) is stable asymptotically almost surely. If

p ≤ 2(1 − ε)
log(N)

N
(8)

for some ε > 0 then the steady state (3) is unstable asymptotically almost surely.

The second statement is consistent with the fact that connectivity of the underlying graph
is a necessary condition for stability of the compromise solution. However, connectivity of
the graph alone does not suffice, in and of itself, to guarantee convergence to the compro-
mised state. The simulations in Fig. 1 highlight this fact. In each case the realization of
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Fig. 2 Comparison of the dynamics between the consensus model (10) and the aggregation model (1, 2).
Here, N = 150 and p = 0.2. The network topology is fixed at t = 0 and is identical for all four simulations

the random graph is connected, so each particle influences every other particle, yet for the
smaller values of p the compromise state is not reached. Figure 2 demonstrates further that,
in general, stability of the compromise solution also depends on the κ parameter: The con-
nected graph in each simulation is identical, yet stability fails as κ approaches one-half. This
establishes once again that connectivity of the graph is not the determining factor, but rather
that a more complicated interplay between the system parameter κ and the structure of the
graph determines stability of the compromise.

Using heuristic methods, we make the following conjecture for this dependence based
on asymptotics of the transition regime:

Conjecture 1.1 (Heuristic asymptotics of the transition regime) Define F by (2) for 0 <

κ < 1 and let eij denote the N × N adjacency matrix of an Erdős-Rényi random graph
G(N,p). There exists a constant p0c (independent of N ) with the following property. If

p ≥ (p0c + ε)
logN

N

for some ε > 0 then the steady state (3) is stable asymptotically almost surely. If

p ≤ (p0c − ε)
logN

N

then the steady state (3) is unstable asymptotically almost surely.

The asymptotic calculations in Sect. 3, suggest that in fact

p0c = 2

2 − κ−κ/(κ+1)(1 + κ)
. (9)

We compare this formula and the simplifying assumptions used to derive it with numerical
experiments in Sect. 3.2.

1.1 Connection to Consensus Algorithms

Equation (6) generalizes the classical consensus algorithm on an undirected graph. Con-
sensus occurs when all the agents approach a common value in the long time limit. This
problem has attracted scholars from many areas such as physics, control theory and biology.
Specifically, the case of single-integrator, linear dynamics taking the form

dxi

dt
=

N∑

j �=i

eij (xi − xj ), xi ∈ R
m, (10)
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is especially well-studied in control theory. Here E = {eij }N
i,j=1 denotes the weighted adja-

cency matrix of the underlying graph G(N): eij > 0 if two nodes are connected and eij = 0
otherwise. The above equation can be written in matrix form,

ẋ = −[L ⊗ Id]x,

where x = (x1, . . . , xN) is the vector of all nodes and L is the Laplacian matrix. While in
general the consensus problem is asymmetric, we consider the symmetric case eij = eji to
emphasize the similarity with our compromise problem.

Definition 1.1 The system (10) reaches consensus if, for all initial conditions xi(0) and all
1 ≤ i, j ≤ N , it holds that ‖xi(t) − xj (t)‖ → 0 as t → ∞.

As shown in Ren [27, 29, 30], Olfati-Saber [24, 25], Moreau [22, 23], and Cao [5], the
role of connectivity and stability are highly relevant for cooperative control algorithms. For
directed graphs with a fixed topology (i.e. the eij are constant in time), the main theorem
regarding consensus is the following [28]:

Theorem 1.2 The system (10) reaches consensus if and only if the directed graph G(N)

has a directed spanning tree. In this case, xi(t) → ∑N

i=1 νixi(0) as t → ∞, where ν =
[ν1, . . . , νn]T ≥ 0, 1T ν = 1, and LT ν = 0.

In the case of a fully connected, undirected graph this reduces to the well-known fact that
the consensus is the center of mass of the initial data. The above theorem also has a natural
simplification in the case of general undirected graphs:

Corollary 1.3 For an undirected graph G(N) (eij = eji), the system (10) reaches consensus
if and only if G(N) is connected.

We now connect these results to well-known results for graph connectivity of Erdős-
Rényi graphs in the large N limit [2, 4, 11]. These results are not new, but the connection
between the two problems has not been emphasized in the literature. We state the main result
in this direction to have a point of comparison for our results on the compromise model.

Theorem 1.4 Consider Eq. (10) in the case of an Erdős-Rényi graph G(N,p). The graph is
constructed by choosing eij = eji equal to zero or one with some fixed probability p ∈ (0,1)

at initialization then remains constant in time. If for some ε > 0

p ≥ (1 + ε)
logN

N

then the problem (10) reaches consensus asymptotically almost surely. If for some ε > 0

p ≤ (1 − ε)
logN

N

then the problem (10) fails to reach consensus asymptotically almost surely.

In the body of this paper we find that the critical probability for convergence to the com-
promise solution, in the compromise model, differs from the critical probability for graph
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connectivity; the threshold has the same logN/N scaling but with a different coefficient.
This is illustrated in Fig. 2. In this set of experiments, we fix p = 0.2, N = 150 and run both
the consensus model and the compromise model for an identical underlying network topol-
ogy and initial condition in all simulations. We study the effect of varying κ from κ = −1
(the consensus limit) to positive values of κ for the compromise model. The underlying
graph is connected; because of this, the consensus model (10) quickly reaches the consen-
sus state. The compromise model (1), (2) reaches the “compromise” state when κ = 0.3;
however it is unstable when κ = 0.4 or higher. This clearly shows that the compromise
model can lead to unstable configurations even when the underlying graph is connected.

1.2 Preliminary Material

Before we address our main task, we first introduce our notation along with the background
material from linear algebra, probability theory and random matrix theory that we shall
use. Capital roman letters such as A,B,C refer to matrices while the corresponding lower-
case letters aij , bij , cij denote their respective entries. We reserve Id for the identity matrix
and 1 = (1, . . . ,1)t for the constant vector. The size of both will be clear from context.
The italicized eij will always denote the edges of the graph under consideration, whereas
the roman version “e” denotes the base of the natural logarithm. For an n × n symmetric
matrix A, we let λi(A) denote the its ith eigenvalue sorted in decreasing order. In other
words, we have

λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A), (11)

where each eigenvalue appears according to its algebraic multiplicity. Under this convention,
a standard identity from linear algebra provides a useful characterization of the ith eigen-
value, i.e. the Courant-Fischer formula, cf. [33]. This formula yields a system of eigenvalue
inequalities, Weyl’s inequalities, that will also prove useful, cf. [33] as well.

Lemma 1.5 (Courant-Fischer Max-Min formula) Let A denote an n × n symmetric matrix
and V a subspace of R

n. Then

λi(A) = max
V :dim(V )=i

min
v∈V :‖v‖2=1

〈v,Av〉 (12)

Lemma 1.6 (Weyl’s inequalities) Let A and B denote symmetric n × n matrices. Then for
any i, j such that 1 ≤ i, j, i + j − 1 ≤ n,

λi+j−1(A + B) ≤ λi(A) + λj (B). (13)

Given a sequence of measurable events {Wn}∞
n=1, each of which lies in some (possibly

different) probability space, we say that Wn holds asymptotically almost surely (a.a.s.) if

P(Wn) → 1 as n → ∞.

Here and in what follows, P always denotes the measure on the probability space in which
the relevant event lies. We denote by Xp a Bernoulli random variable with parameter p, i.e.

P(Xp = 1) = p and P(Xp = 0) = q := 1 − p, (14)

whereas X̃p := Xp − p will denote a mean-zero Bernoulli random variable. We use E(X)

to denote the mean or expectation of the random variable X, and the notation X =d Y to
signify that the random variables X and Y have the same distribution.
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Our arguments require probabilistic estimates of the form P(|X| ≥ λ), where X will rep-
resent either a weighted sum of X̃p variables or the operator norm of a symmetric random
matrix. For the first case it suffices to simply recall in Lemma 1.7 a variant of the well-
known Chernoff bound, cf. [21]. In Lemma 1.8 we prove an operator norm estimate using
a standard technique from random matrix theory. The proof of Lemma 1.8 closely mirrors
Theorem 1.4 in [36]. Theorem 1.4 in [36] is stated without proof, so to obtain an explicit
result we essentially reproduce the arguments from [36] while taking care to keep the esti-
mates as concrete as we will need.

Lemma 1.7 (Chernoff bound) Let X1, . . . ,Xm denote discrete, independent random vari-
ables satisfying E(Xi) = 0 and |Xi | ≤ 1. If E(X2

i ) = σ 2
i and σ 2 = ∑

σ 2
i , then for any

0 ≤ λ ≤ 2σ

P

(∣∣∣∣∣

m∑

i=1

Xi

∣∣∣∣∣ ≥ λσ

)
≤ 2e−λ2/4. (15)

Lemma 1.8 Let A = {aij }n
i,j=1 denote a symmetric random matrix with independent upper-

triangular entries. Let p0, q0 > 0 denote arbitrary constants independent of n. If

(i) E(aij ) = 0, (ii) E
(
a2

ij

) ≤ 1 and (iii) |aij |2 ≤ n

q0 log3/2 n
a.s.,

then

P
(‖A‖2 ≥ 4

√
p0n log3/2 n

) → 0 (16)

faster than n−M for any M > 0 and all n sufficiently large.

Proof We follow Wigner’s trace method [37] as outlined in [3, 33, 36]. For any integer k > 0
and any λ > 0, the fact that ‖A‖2k

2 ≤ trace(A2k) and Markov’s inequality combine to show

P
(‖A‖2 ≥ λ

) = P
(‖A‖2k

2 ≥ λ2k
) ≤ P

(
trace

(
A2k

) ≥ λ2k
) ≤ λ−2k

E
(
trace

(
A2k

))
.

Substituting the hypotheses (i)–(iii) into the estimate from [36] yields

E
(
trace

(
A2k

))

≤
k+1∑

p=1

(
n

q0 log3/2 n

)k−p+1

np

(
2k

2p − 2

)
24k−2p+3p2k−2p+2(2k − 2p + 4)k−p+1.

After performing the change of variables l = k + 1 − p, this estimate reads

E
(
trace

(
A2k

)) ≤
k∑

l=0

(
n

q0 log3/2 n

)l

nk+1−l

(
2k

2l

)
22l+2k+1(k + 1 − l)2l (2l + 2)l

= 22k+1nk+1
k∑

l=0

(
8(l + 1)

q0 log3/2 n

)l

(k + 1 − l)2l

(
2k

2l

)
.

To estimate the sum, let C(n, k) := 8(k + 1)/(q0 log3/2 n) and f (l) := [√C(k + 1 − l)]2l .
Elementary calculus then shows that f attains its maximum when

√
C(k + 1 − l)

[
log

√
C(k + 1 − l) + 1

] = √
C(k + 1).
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This has a unique solution in terms of special functions,

√
C(k + 1 − l) = eW [e√C(k+1)]−1,

where W [x] denotes the product-log function. That is, W [x] denotes the unique (for x > 0)
solution to W [x]eW [x] = x. As a consequence,

E
(
trace

(
A2k

)) ≤ 22k+1nk+1

( √
C(k + 1)

W [e√C(k + 1)]
)2(k+1)(W−1)/W k∑

l=0

(
2k

2l

)

= 42knk+1

( √
C(k + 1)

W [e√C(k + 1)]
)2(k+1)(W−1)/W

.

Substituting this expression into the estimate for P(‖A‖2 ≥ λ) and simplifying demonstrates

P
(‖A‖2 ≥ λ

) ≤ λ−2k42knk+1

[
C1−1/W (k + 1)2−2/W

W 2−2/W

]k+1

.

Now set λ = 4
√

p0n log3/2 n and k = �logn�. Then

P
(‖A‖2 ≥ 4

√
p0n log3/2 n

) ≤ n log3/2 n

[(
8

q0W 2

)1−1/W
(k + 1)3(1−1/W)

p0 log3−3W/2 n

]k+1

.

With this choice of k + 1, it then follows that

P
(‖A‖2 ≥ 4

√
p0n log3/2 n

) ≤ n log3/2 n

[(
8

q0W 2

)1−1/W 1

p0 log3/2W n

]k+1

and that W [e√C(k + 1)] → ∞ as well. Thus

[(
8

q0W 2

)1−1/W 1

p0 log3/2W n

]
→ 0,

so that

P
(‖A‖2 ≥ 4

√
p0n logβ n

) → 0

faster than n−M for any M > 0 and all n sufficiently large. �

We also need to establish the connectivity properties of a slight modification of the
standard Erdős-Rényi random graph G(N,p) on N vertices. Given a parameter p ∈ (0,1),
we construct an undirected, bipartite graph on N vertices by assigning independent edges
eij = eji =d Xp whenever 1 ≤ i ≤ n < j ≤ N and forcing eij = eji = 0 otherwise. We let
K(N) denote the set of all possible bipartite graphs constructed in this manner. We write
(V ,E) ∈ K(N,p) or (V ,E) ∈ G(N,p) to specify the parameter p when referring to a ran-
domly sampled graph of either type. Here V = {v1, . . . , vN } is a set of N vertex labels and
E = {eij }N

ij=1 denotes the corresponding N × N adjacency matrix. We let Kc(N) ⊂ K(N)

denote the subset of connected graphs and Kd(N) = K(N)\ Kc(N) the disconnected graphs.
By slightly modifying standard proofs from the literature regarding Erdős-Rényi graphs

[4] we can readily prove the following lemma. While more sophisticated and more general
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results exist concerning random bipartite graphs [4], we include a proof below for the sake
of completeness.

Lemma 1.9 Given p ∈ (0,1) let (V ,E) ∈ K(N,p) denote a corresponding random graph.
If

p ≥ 2(1 + ε)
logN

N
(17)

for some constant ε > 0 then (V ,E) is connected with probability at least 1 − (N/2)−ε/2,
i.e. asymptotically almost surely. Conversely, if

p ≤ 2(1 − ε)
logN

N
(18)

for some constant ε > 0 then (V ,E) contains isolated vertices with probability at least
1 − e−(N/2)ε/2

.

Proof For fixed n := N/2, let Wn,k denote the event that there exist k vertices {vi1 , . . . , vik }
with no edges connecting {vi1 , . . . , vik } and V \ {vi1 , . . . , vik }. Note that

P
(
(V ,E) ∈ Kd(N)

) = P

(
n⋃

k=1

Wn,k

)
≤

n∑

k=1

P(Wn,k).

To estimate P(Wn,k), for a fixed {vi1 , . . . , vik } ∈ Wn,k let j denote the number of indices il
with il ≤ n and k − j the number of indices with il > n. By independence of the edges eij ,
a straightforward computation shows that

P
({vi1 , . . . , vik } ∈ Wn,k

) = (1 − p)(n−j)(k−j)+j (n+j−k).

Summing over the total number of possible choices for {vi1 , . . . , vik } yields as a consequence
that

P(Wn,k) ≤
k∑

j=0

(
n

j

)(
n

k − j

)
(1 − p)(n−j)(k−j)+j (n+j−k)

≤ (1 − p)(k/2)(N−k)

k∑

j=0

(
n

j

)(
n

k − j

)

=
(

N

k

)
(1 − p)(k/2)(N−k).

The estimates
(
N

k

) ≤ (Ne/k)k and (1 − p) ≤ e−p therefore give

P
(
(V ,E) ∈ Kd(N)

) ≤
n∑

k=1

(
N

k

)
(1 − p)(k/2)(N−k)

≤
n∑

k=1

exp
(
k
(
log(Ne/k) − p(n − k/2)

))
.
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Without loss of generality, assume 0 < ε < 1. Then log(Ne/k) − p(n − k/2) ≤ −ε logn +
(1 + ε)(logn)/N + log 2e. As ε > 0, for all n sufficiently large it follows that

P
(
(V ,E) ∈ Kd(N)

) ≤
n∑

k=1

n−kε/2 ≤ n−ε/2 1

1 − n−ε/2
→ 0

as desired. To show the second statement, it suffices to show that one of the vertices
{v1, . . . , vn} becomes isolated. Let Ri = {ei,n+1 = · · · = ei,N = 0} denote the event that the
vertex vi is isolated. As R1 =d · · · =d Rn and these events are independent for 1 ≤ i ≤ n, it
follows that

P

(
n⋃

i=1

Ri

)
= 1 − P

(
Rc

1

)n = 1 − [
1 − P(R1)

]n = 1 − [
1 − (1 − p)n

]n
.

When p ≤ (1 − ε)n−1 logn it follows that (1 − p)n ≥ nε/2−1 for n sufficiently large. Thus
[1 − P(R1)]n ≤ exp(−nP(R1)) ≤ exp(−nε/2), so that

P

(
n⋃

i=1

Ri

)
≥ 1 − exp

(−nε/2
) → 1

as desired. �

2 Rigorous Estimates for Stability

We may now turn to our main task, i.e. the proof of Theorem 1.1. Recall the eigenvalue
problem reads

λ

(
Φ

Ψ

)
= L

(
Φ

Ψ

)
(19)

Note that Φ = Ψ = 1 always defines an eigenvector of (19) with eigenvalue zero. We there-
fore call a “two-group” solution stable when the second largest eigenvalue, λ2(L), of the
system (19) is strictly negative. In crude analogy to the law of large numbers, we expect that
L should concentrate around its mean, L ≈ E(L), where the error becomes negligible in the
limit of infinite system size. Taking the expectation E of (19) entrywise gives

E(L) = pLcomp,

where Lcomp denotes the stability matrix when the underlying graph is complete (eij ≡ 1 in
(19)). Thus

L = pLcomp + R, (20)

where R := L − E(L) is a N × N , symmetric matrix that has mean-zero entries. From
Weyl’s inequalities (13), we have

λ2(L) ≤ pλ2(Lcomp) + ‖R‖2.

Heuristically then, if λ2(Lcomp) < 0 and the error ‖R‖2 is asymptotically negligible the “two-
group” solution is stable asymptotically almost surely. Using the estimates from the previous
section, we show this is indeed the case provided p does not vanish too rapidly.
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To realize this program, we first consider stability of the complete graph. A direct com-
putation reveals that

Lcomp := n(κ − 1)Id +
(−κ1 ⊗ 1 1 ⊗ 1

1 ⊗ 1 −κ1 ⊗ 1

)
. (21)

Let Ψ = 0 and Φ = e1 − ej , where ej ∈ R
n denotes any of the (n − 1) remaining stan-

dard basis vectors. Setting v = (Φ,Ψ )t or v = (Ψ ,Φ)t and performing a straightforward
computation shows that

Lcompv = n(κ − 1)v,

so that n(κ −1) is an eigenvalue with multiplicity N −2 by linear independence. The choice
v = (1,−1)t yields an eigenvalue of −N . Stability of the complete graph therefore demands
κ < 1, in which case

λ1(Lcomp) = 0, λ2(Lcomp) = · · · = λN−1(Lcomp) = n(κ − 1), λN(Lcomp) = −N.

Turning now to the random graph case, we wish to find how small we can take p while
not losing control of the error R in (20). To this end we decompose the error as

R = D + Ẽ, (22)

where D denotes a diagonal matrix and Ẽ denotes a symmetric matrix. The diagonal matrix
D has entries

dii = κ

n∑

j=1

ãij −
n∑

j=1

b̃ij

di+n,i+n = κ

n∑

j=1

c̃ij −
n∑

j=1

b̃j i

for 1 ≤ i ≤ n. (23)

The matrix D therefore has entries comprised of sums of independent random variables,
although the entries of D depend on one another and depend on the entries of Ẽ as well.
The matrix Ẽ has the form

Ẽ =
(−κÃ B̃

B̃t −κC̃

)
(24)

The entries of Ã and C̃ satisfy ãij = ãj i =d X̃p and c̃ij = c̃j i =d X̃p , and are independent
on the upper triangular portion. The entries b̃ij =d X̃p of B are independent across the full
matrix. Estimating ‖R‖2 therefore involves estimating the operator norm of two types of
matrices: a diagonal matrix with entries that are sums of independent X̃p variables and a
symmetric matrix with independent X̃p variables on the upper triangle. Lemma 1.7 allows
us to handle the former while Lemma 1.8 suffices to handle the latter.

We first estimate ‖D‖2. As D is diagonal, this simply equals the entry with maximum
absolute value. We simply apply Lemma 1.7 directly to the N independent random variables
that constitute a given diagonal entry. A direct calculation of the relevant quantities in the
statement of the lemma shows that

σ 2 := κ2
n∑

j=1

E
(
ã2

ij

) +
n∑

j=1

E
(
b̃2

ij

) = n
(
1 + κ2

)
p(1 − p) = n

(
1 + κ2

)
pq
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Thus whenever λ2/4 ≤ n(1 + κ2)pq , it follows from the lemma that

P
(|dii | ≥ λσ

) ≤ 2e−λ2/4.

By the union bound, this implies

P
(‖D‖2 ≥ λσ

) ≤ 4ne−λ2/4.

To ensure the right hand side still tends to zero as n → ∞, we take λ2/4 = (1 + ε) logn for
some ε > 0. In turn, this places the requirement on p that

pq >
logn

4(1 + κ2)n
. (25)

Substituting these choices into the previous bound demonstrates that

P
(‖D‖2 ≥ 2

√
(1 + ε)

(
1 + κ2

)
pqn logn

) ≤ 4n−ε (26)

provided that (25) holds.
It remains to estimate ‖Ẽ‖2. For this task we apply Lemma 1.8 from the preliminary

material. We let M denote the N × N symmetric matrix

M = Ẽ√
p

,

so that its entries mij satisfy

E(mij ) = 0, E
(
m2

ij

) ≤ max
{
κ2,1

}
, |mij |2 ≤ max

{
κ2,1

} 1

p
.

As 0 < κ < 1, we satisfy the hypotheses of Lemma 1.8 provided we place one further re-
striction on p, i.e. that

Np ≥ q2
0 log3/2 N

where q0 > 0 denotes an arbitrary, fixed constant. We then have that there exists an N -
independent constant C so that the estimate

P
(‖Ẽ‖2 ≥ 4p0

√
Np log3/2 N

) ≤ CN−2 (27)

holds for all p0, q0 > 0 and N sufficiently large. Substituting the previous estimates (26),
(27) into the bound for ‖R‖2, we find

λ2(L) ≤ Np
(κ − 1)

2
+ 4p0

√
Np log3/4 N + 2

√
(1 + ε)

(
1 + κ2

)
pqn logn

holds with probability at least

1 − 2 max
{
4(N/2)−ε,CN−2

}
.

Taking ε = 3 and p0 = (1 − κ)q0δ/8 for some δ > 0, for instance, we see that

λ2(L) ≤ −√
Np

(1 − κ)q0

2
(1 − δ) log3/4 N + 4

√
np

(
1 + κ2

)
logn
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with probability at least

1 − CN−2.

As a consequence, we find λ2(L) < 0 asymptotically almost surely. The following theorem
encapsulates the preceding discussion.

Theorem 2.1 Let 0 < κ < 1 and p ∈ (0,1) satisfy

p ≥ q2
0

log3/2 N

N
(28)

for any q0 > 0. Then for any δ > 0

λ2(L) ≤ −
(

(1 − κ)(1 − δ)

2
q0 + O

(
log−1/4 N

))√
Np log3/4 N

asymptotically almost surely.

To establish the converse result, we appeal to the results regarding connectivity of random
graphs in the preliminary material. Suppose that

p ≤ 2(1 − ε)
logN

N

for some ε > 0. Then by Lemma 1.9, a graph (V ,E) ∈ K(N,p) contains isolated vertices
with probability at least 1 − exp(−(N/2)ε/2). For any such graph, let j denote the index of
an isolated vertex and set

v = c11 + c2ej

for any choice of coefficients c1, c2 such that ‖v‖2 = 1. Then 〈ej ,L2ej 〉 = 0, so that

〈v,Lv〉 = κc2
2〈ej ,L1ej 〉 ≥ 0

provided κ ≥ 0. By the Courant-Fischer formula (12), this implies λ2(L) ≥ 0 for any such
graph. Therefore for any choice of κN ≥ 0 we find λ2(L) ≥ 0 asymptotically almost surely.
We summarize this fact in the following theorem.

Theorem 2.2 Let κ > 0. If for some ε ≥ 0

p ≤ 2(1 − ε)
logN

N
,

then λ2(L ≥ 0) with probability at least 1 − exp(−(N/2)ε/2). In particular, the steady-state
(3) is unstable asymptotically almost surely.

Remark 2.3 From a modelling perspective, in the system of ODEs (1) only κ > 0 makes
sense. However, the preceding arguments hold if κ ≤ 0 as well. When κ < 0, the statement
“λ2(L) < 0 asymptotically almost surely” proves exactly equivalent to the connectedness of
the full Erdős-Rényi random graph G(N,p) on N vertices. In this case it is well-known that
the sharp threshold is p = logN/N , so that at κ = 0 a “discontinuity” occurs in the sharp
threshold for stability.
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3 Estimates for Critical Probability

The main goal of this section is to derive formula (9). We first present formal asymptotics
and then present numerical simulations supporting these asymptotics.

3.1 Formal Asymptotics

The formal asymptotics rely on the following key lemma that may be of independent interest.

Lemma 3.1 Let Pλ denote the Poisson distribution with parameter λ. Define

X := Pλ; Y := −κPλ and Z := X + Y, where 0 < κ < 1. (29)

Suppose that

λ = λ0 logN with N � 1, λ0 = O(1) (30)

and let Z1, . . . ,ZN be N independent realizations of the random variable Z. Define S and
x0 through the equations

ψ(x0, S,λ0) := −2λ0 + S

(
log

λ0

S
+ 1

)
+ S − x0

κ

(
log

λ0κ

S − x0
+ 1

)
= −1, (31)

∂ψ

∂S
(x0, S,λ0) = log

λ0

S
+ 1

κ
log

κλ0

S − x0
= 0. (32)

Then in the limit N � 1, we have

E
(
min(Z1, . . . ,ZN)

) ∼ x0 logN, N � 1. (33)

As a consequence, E(min(Z1, . . . ,ZN)) ∼ 0 if and only if

λ0 = 1

2 − κ−κ/(κ+1)(1 + κ)
. (34)

Remark 3.2 The asymptotic statement in (33), that

E(min(Z1, . . . ,ZN))

x0 logN
→ 1 as N → ∞,

follows as consequence of the more precise statement

P
(
min(Z1, . . . ,ZN) > x0 logN

) ∼ exp
{−CNψ(x0,S,λ0)+1

}

for some positive constant C = O(logN).

We first use the lemma to derive (9), then prove Lemma 3.1 on page 166. As in Sect. 2,
we decompose L into three parts

L = pLcomp + D + Ẽ, (35)

where Lcomp is defined in (21) and D and Ẽ are defined in (22), (23), (24). The matrix Ẽ

is a symmetric random matrix whose entries have mean zero and D is a diagonal matrix
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whose entries are minus the row sums Ẽ. As noted in Sect. 2, the matrix Lcomp has a zero
eigenvalue with algebraic multiplicity one, an eigenvalue λ = −N(1 − κ)/2 with algebraic
multiplicity 2N − 2 and an eigenvalue λ = −N < −N(1 − κ)/2 with algebraic multiplicity
one. With this in mind, and in the spirit of asymptotics, we formally replace

Lcomp ∼ −N(1 − κ)

2
Id. (36)

To gain further insight on the remaining terms, we first consider the simpler case where
eij =d N (p,pq) are normally distributed with the same mean and variance as the Bernoulli
case. The diagonal entires of D therefore have distribution

dii =d

√
1 + κ2

√
pqN/2N (0,1). (37)

If N1, . . . , NN denote N independent unit Gaussians, an argument similar to the proof of
Lemma 3.1 demonstrates that E(max(N1, . . . , NN)) ∼ √

2 logN . Due to the symmetry of Ẽ,
the entries of D are not independent. However, if we formally assume that D has indepen-
dent entries this would imply that E(max(dii)) ∼ √

(1 + κ2)pqN logN . Finally, Ẽ/
√

pq is
a symmetric random matrix whose entries have mean zero and variance bounded by one.
In the case of normally distributed weighted edges eij , the entries of Ẽ/

√
pq =d N (0,1)

have uniformly bounded fourth moments. From the Bai-Yin theorem (cf. [3]), it follows that
‖Ẽ‖2 = O(

√
pqN ) asymptotically almost surely. Thus ‖Ẽ‖2 is O(

√
logN ) smaller than

the maximum entry of D if N is large. We therefore formally discard Ẽ in (35) to obtain

λ2(L) ∼ −Np(1 − κ)

2
+

√(
1 + κ2

)
pqN logN.

The two terms in balance precisely when p has the critical scaling p = O(logN/N). Sub-
stituting p = p0 logN/N and setting λ2(L) = 0 yields a critical threshold

p0c = 4(κ2 + 1)

(1 − κ)2
, (38)

so that the eigenvalue λ2 is negative for p0 > p0c and is positive for p0 < p0c asymptotically
almost surely.

We now turn our attention to the original problem. From (23) we have

dii = (1 − κ)
N

2
p +

n∑

j=1

κaij −
n∑

j=1

bij

di+n,i+n = (1 − κ)
N

2
p +

n∑

j=1

κcij −
n∑

j=1

bji

for 1 ≤ i ≤ n. (39)

As in the normal case, our first simplifying assumption is to discard Ẽ in (35). Unlike the
normal case, we cannot prove that ‖Ẽ‖2 = O(

√
pqN ) for p as small as p = p0 logN/N

(cf. Lemma 1.8). The numerical evidence in Sect. 3.2 is consistent with ‖Ẽ/
√

pqN‖2 =
o(

√
logN ) when p = p0 logN/N , however, so that Ẽ is of lower order in this case as well.

Substituting (39) and (36) into (35) and discarding Ẽ we obtain

L ∼ D̂,
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where D̂ denotes the diagonal matrix with entries

d̂ii =
n∑

j=1

κaij −
n∑

j=1

bij

d̂i+n,i+n =
n∑

j=1

κcij −
n∑

j=1

bji

for 1 ≤ i ≤ n. (40)

This amounts to approximating L by its diagonal. As in the normal case, we continue to
assume that the entries d̂ii are independent. While this is not true, in practice this assump-
tion introduces negligible error to the overall computation. Next, we set p = p0 logN/N

and approximate the sum of n independent Bernoulli trials
∑n

j=1 aij by a Poisson dis-

tribution. That is, we replace
∑n

j=1 aij ∼ Pλ with λ = pn = (p0 logN)/2. Then d̂ii ∼
κPλ −Pλ is the difference of two Poisson distributions. The threshold occurs precisely when
E max(d̂1,1, . . . , d̂N,N ) = 0. By Lemma 3.1 this happens precisely when λ0 = p0c/2 satisfies

p0c

2
= 1

2 − κ−κ/(κ+1)(1 + κ)
. (41)

This is precisely the threshold (9).
It remains to give the derivation of Lemma 3.1. We first recall Laplace’s method since it

plays a central role in the derivation. We state it as follows:

Lemma 3.3 (Laplace’s method) Suppose that f (x) is smooth inside [a, b]. Suppose that
f (x) has a global maximum at x0 with a < x0 < b and with f ′′(x0) < 0. Then

∫ b

a

exp

{
1

ε
f (x)

}
∼

√
2πε

|f ′′(x0)| exp

{
1

ε
f (x0)

}(
1 + O(

√
ε)

)
, ε � 1 (42)

If f is increasing inside [a, b] and with f ′(b) > 0, then

∫ b

a

exp

{
1

ε
f (x)

}
∼ ε

f ′(b)
exp

{
1

ε
f (b)

}(
1 + O(ε)

)
, ε � 1 (43)

See for example [17] for explanation of Laplace’s method.

Proof of Lemma 3.1 Let f (t), g(t) and h(t) be the probability density function for X,Y

and Z, respectively. We have

f (t) =
∞∑

k=0

e−λ λk

k! δ(t − k);

g(t) = 1

κ
f

(
− t

κ

)
;

h(t) =
∫ ∞

−∞
f (s)g(t − s) ds.

Using the Stirling approximation formula

log(k!) ∼ k logk − k + O(logk), k � 1
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we then estimate

f (t) ∼ C exp
(
φ(t, λ)

)

where we define

φ(t, λ) := −λ + t

(
log

λ

t
+ 1

)
, t > 0.

Here and below, C will denote a positive quantity that has order at most O(logN). We then
obtain

h(t) ∼
∫ ∞

t

C exp
{
ψ(t, s, λ)

}
ds where ψ(t, s, λ) := φ(s,λ) + φ

(
s − t

κ
, λ

)
. (44)

Consider the critical scaling

s = S logN; t = T logN, λ = λ0 logN; S,T ,λ0 = O(1).

We then have

exp
{
ψ(t, s, λ)

} = exp
{
ψ(T ,S,λ0) logN

}

so that the integral (44) can be estimated asymptotically using Laplace’s method (42). It then
yields

h(t) ∼ C exp
{
ψ

(
T ,S(T ),λ0

)
logN

}
, t = T/ε, T ,λ0 = O(1) (45)

where S(T ) satisfies d
dS

ψ(T ,S,λ0) = 0:

log
λ0

S
+ 1

κ
log

κλ0

S − T
= 0 (46)

Elementary calculus shows that (46) has a unique root S = S(T ) > T which is the global
maximum of ψ(T ,S,λ0). Next, we approximate

∫ x0

−∞
exp

{
ψ

(
T ,S(T ),λ0

)
logN

}
dT ∼ C exp

{
ψ

(
x0, S(x0), λ0

)
logN

}
(47)

This follows from the fact that the function ψ(x0, S(x0), λ0) is increasing in x0 and from
(43). Hence we have:

P (Z > x0 logN) ∼ 1 − C exp
{
ψ

(
x0, S(x0), λ0

)
logN

}

and

P
(
min(Z1, . . .ZN) > x0 logN

) ∼ (
1 − C exp

{
ψ

(
x0, S(x0), λ0

)
logN

})N
.

Using the elementary estimate (1 − x/N)N ∼ exp(−x) as N → ∞, we therefore obtain

P
(
min(Z1, . . . ,ZN) > x0 logN

) ∼ exp
[−C exp

{[
ψ

(
x0, S(x0), λ0

) + 1
]

logN
}]

.

Thus we have a sharp threshold: if ψ + 1 < 0 then min(Z1, . . . ,ZN) > x0 logN with
probability rapidly approaching one; in the oppose case, min(Z1, . . . ,ZN) < x0 logN with
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Fig. 3 Comparison between the
numerics (see Table 1) and
theory as given by (9) for the
threshold value

probability rapidly approaching one. Thus E(min(Z1, . . . ,ZN)) = x0 logN precisely when
ψ(x0, S,λ0) + 1 = 0 = d

dS
ψ(x0, S,λ0). Finally to show (34), we set x0 = 0 in (32) to obtain

log
κλ0

S
= −κ log

λ0

S
(48)

so that (31) simplifies

0 = 1 − 2λ0 + S + S

κ
; S = λ0κ

1/(κ+1) (49)

Solving (48), (49) for λ0 then yields (34). �

3.2 Numerical Computations

To test the asymptotic theory, we compare the theoretical threshold (9) with numerical esti-
mates of the threshold. For a given probability p and given system size N define f (p,N) :=
E(λ2(L)), where L denotes the stability matrix (6). We estimate f (p,N) by taking the aver-
age of λ2(L) for 1,000 different random realizations. To estimate p0c for a fixed value of N ,
we use the bisection method to solve f (pc,N) = 0 then set p0c = pcN/ logN . This yields
the following table.

From the asymptotics in Lemma 3.1 we expect error of at least O( 1√
logN

). This de-
mands very large N before we can expect to see reasonable agreement between the asymp-
totics and numerics. For example, as 1√

log 10,000
= 0.33 the typical error of 10 % with

N = 10,000 in the table is still in line with expectations. We do not include results for
N = 1000 if κ > 0.5. This is because p0c becomes too big, requiring a larger value of N

than N = 1000 to make p sufficiently small. For example κ = 0.6 yields p0c = 32.16 so
that p = 32.16 log(1000)/1000 ≈ 0.2 which is introduces an O(p) error comparable with
O(1/

√
logN ). The graph p0c(κ) is also shown in Fig. 3. Good agreement is observed be-

tween the theoretical prediction and numerical computations.
As we have no rigorous proof of the simplifying assumptions in the derivation of for-

mula (9), we attempt to verify them numerically. Specifically, we assume that the matrix Ẽ

in (35) is of lower order and that the diagonal entries in (39) are actually independent ran-
dom variables. To verify the first assumption, let Y = (Xp − p)/

√
p(1 − p)N where Xp

denotes a Bernoulli random variable. Take the critical scaling p = p0 logN/N and consider
a symmetric N × N matrix M(N,p0) with upper triangular entries mij =d Y . We compute
the expected operator norm E(‖M(N,p0)‖2) for fixed p0 and N using an average of 100
independent trials. Table 2 shows the results as a function of p0 and N up to N = 10000.



Swarming on Random Graphs 169

Table 1 Comparison between asymptotic theory and numerics for the critical threshold p0c

κ Theoretical prediction
for p0c from (9)

p0c from numerics

N = 1000 (rel. err %) N = 10000 (rel. err %)

0.05 2.53484 2.173 (16.7 %) 2.222 (14.1 %)

0.1 3.10622 2.692 (15.4 %) 2.737 (13.5 %)

0.15 3.79413 3.331 (13.9 %) 3.357 (13.0 %)

0.2 4.64245 4.097 (13.3 %) 4.145 (12.0 %)

0.25 5.70426 5.065 (12.6 %) 5.121 (11.4 %)

0.3 7.05112 6.32 (11.6 %) 6.364 (10.8 %)

0.35 8.78366 7.886 (11.4 %) 7.967 (10.2 %)

0.4 11.0478 9.884 (11.8 %) 10.06 (9.83 %)

0.45 14.0616 12.56 (12 %) 12.85 (9.44 %)

0.5 18.1623 16.09 (12.9 %) 16.54 (9.84 %)

0.55 23.8918 21.81 (9.57 %)

0.6 32.1643 29.25 (9.97 %)

0.65 44.614 40.57 (9.97 %)

0.7 64.3877 58.01 (11.0 %)

0.75 98.1659 87.58 (12.1 %)

Table 2 Numerical verification that Ẽ in (35) is negligible

p0 E(‖M(N,p0)‖2) (std)

N = 500 N = 1000 N = 5000 N = 10000

0.1 2.9063 (0.188) 2.9353 (0.169) 2.9793 (0.120) 2.9749 (0.098)

0.5 2.2394 (0.076) 2.2446 (0.057) 2.2461 (0.050) 2.2430 (0.047)

1 2.0992 (0.041) 2.1148 (0.036) 2.1087 (0.023) 2.1039 (0.028)

1.5 2.0473 (0.043) 2.0672 (0.028) 2.0648 (0.022) 2.0581 (0.029)

2 2.0218 (0.038) 2.0362 (0.033) 2.0417 (0.018) 2.0452 (0.017)

10 1.9225 (0.027) 1.9546 (0.023) 1.9865 (0.022) 1.9933 (0.017)

The value in parentheses denotes the standard deviation of the 100 trials. The results are
consistent with our first assumption, that ‖M(N,p0)‖2 = o(

√
logN ); in fact these numerics

suggest that ‖M(N,p0)‖2 = O(1) as N → ∞ and for fixed p0. However, as
√

log 10 000 ≈
3.03 is still rather large, a much more systematic numerical study is required to verify this
conjecture with any certainty. This lies beyond the scope of the present work.

To verify the second assumption we consider the following numerical test. Let Si =∑N

j=1 aij where eij =d Xp denote Bernoulli random variables with the dependence

assumption ξij = ξji and let Ai = ∑N

j=1 bij where bij =d Xp denote fully indepen-
dent Bernoulli random variables. We then compute s := E(min(S1, . . . , SN)) and a :=
E(min(A1, . . . ,AN)). The second assumption essentially states that s/a → 1 as N → ∞.
Numerically this is indeed true. In all the cases we tried, the difference between s and a was
negligible. For example taking N = 1000, p0 = 1.5 and using 2000 trials, we found that
a ≈ 1.823 and s ≈ 1.815 with a nearly identical histogram of the sample trials.
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4 Discussion

This paper presents a study of the behavior of a well-known swarming algorithm where
the standard all-to-all coupling between agents is replaced by a random graph where two
agents interact with some probability p. The classical ‘compromise’ solution is shown to
lose stability when the graph is very sparse and estimates are derived on the sparseness of
the graph (in terms of bounds on p) such that the clustering solution is no longer stable.
While the best result we can obtain rigorously is that the compromise solution is stable
when p ≥ O(log3/2 N/N), the calculations in Sect. 3 suggest that the critical probability
scales like p = O(logN/N). Moreover, the constant is strictly larger than the threshold for
connectivity of the underlying graph. Closing the gap between the rigorous result and our
conjectured scaling remains a difficult open problem. The main difficulty lies in obtaining
stronger estimates on the operator norm of Bernoulli random matrices, such as an improved
version of Lemma 1.8, when p scales with logN/N . To the best of our knowledge such
estimates do not yet exist, which demonstrates the need for better understanding of random
Bernoulli matrices in the critical regime p = O(logN/N).

We note that the all-to-all coupling assumption underlying many aggregation models,
while useful for analytical computations, is numerically expensive: simulating one step of
an aggregation model on N fully coupled particles has a cost of O(N2). On the other hand,
our analysis suggests that similar dynamics might be achieved with relatively sparse cou-
pling, whereby each particle is coupled to only O(logN) other particles chosen at random.
The cost of each step in the computation would then be of O(N logN) while still retaining
the qualitative aspects of the N2 coupling. This observation might also prove useful when
using the compromise model, or a related model, in a distributed control setting [15, 16].
For problems in which communication between agents is expensive, such as mobile robot
technology that uses a wireless signal for communication, the reduction to O(logN) inter-
actions per agent would then allow use of the compromise model in a setting where the usual
O(N) cost is prohibitively expensive.

Figure 4 illustrates this phenomenon for some two dimensional models in which the
geometry is more complex than that of the line. As in the one dimensional case, we draw
a random graph from G(N,p) at initialization, then solve the two-dimensional equivalent
of (1) numerically while keeping the graph fixed throughout the simulation. The sparse
connectivity of the graph manifests as a ‘noisy’ version of the fully-connected configuration
even though we use a fixed graph for the simulation and no noise is actually present. We
conjecture that the expected value over different realizations of these sparse graphs (where
the connection is viewed as a random variable) would lead to an additional diffusion process.
It is also an interesting open question to study how the sparsity of connections affects the
confinement properties of the potential. Numerical experiments shown in Fig. 4 indicate that
confinement is preserved even for relatively small values of p. Based on the results of this
paper, it is tempting to conjecture that confinement is preserved up to p = O(logN/N).

Our current analysis readily extends to higher dimensions and to more general random
graph models. In higher dimensions, ‘simplex’ configurations (cf. the top row in Fig. 4)
are the natural analogue of the ‘compromise’ solution that we consider in this paper. With-
out the random graph structure, the stability analysis for such solutions already exists [19,
32]. Extending the present analysis to these cases would therefore only require a version
of the trace method for block matrices, but in principle this extension is straightforward.
Outside of this modification, the program to demonstrate stability remains the same. The
assumption that all agents interact, on average, with the same number Np of other agents
might be inappropriate depending on the application. The generalization of the Erdős-Rényi
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Fig. 4 Examples of two-dimensional steady states for the system (1) with F(r) = min(ar + b,1 − r), eij

drawn according to (4) and N = 500. The ODE system was simulated using the forward Euler method until
the equilibrium was achieved. Note that the “shadow” of the steady state is preserved even for relatively small
values of N

model G(N,p) due to Chung and Lu [7, 8] overcomes this difficulty by allowing for ar-
bitrary degree sequences. Provided the minimum degree of the graph is sufficiently large,
the trace method also applies when studying the Laplacian matrix for such graphs [9]. Our
results should therefore extend, in a straightforward manner, to this generalized version of
the Erdős-Rényi model.
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