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We introduce the following edge-removal process: remove edges at random, one at a time, until
the graph becomes disconnected. We show that the expected number of edges thus removed is
equal to (m + 1)A, where m is the number of edges in the graph, and A is the average of the
all-terminal reliability polynomial. Based on this process, we propose a Monte-Carlo algorithm to
quickly estimate the graph reliability (whose exact computation is generally an NP-hard problem).
Moreover, we show that the distribution of the edge-removal process can be used to quickly estimate
the reliability polynomial. We then propose increasingly accurate asymptotics for graph reliability
based solely on degree distributions of the graph. These asymptotics are tested against several real-
world networks and are shown to be accurate for sufficiently dense graphs, whose average degree is
above 2. They start to fail for “subway-like” networks that contain many paths of vertices of degree
two. Different asymptotics are derived for such networks.

1. INTRODUCTION

For a network (which we assume here is represented by
a finite undirected graph, possibly with multiple edges)
there are many models of robustness to component fail-
ure. The simplest measures include the minimum degree
(the minimum number of edges whose removal discon-
nects a vertex from the rest of the graph), the edge-
connectivity (the minimum number of edges whose re-
moval disconnects the graph), and the vertex connectivity
(the minimum number of vertices whose removal discon-
nects the graph or reduces it down to a single vertex).
Another indirect measure is the algebraic connectivity of
the graph [1] which measures how fast information prop-
agates through the graph [2–5].

However, such static measures are rather coarse and
do not take into account that the components of a graph
may, at different junctures, fail to be operational. So
more nuanced probabilistic models have been described,
where the components (vertices and/or edges) are sub-
ject to random failures. In the most common of these
models, it is the edges that fail independently with the
same probability q, while the vertices are always opera-
tional, and we ask for the probability that the network is
operational, where operational can mean, for example:

• all vertices can communicate (the all-terminal reli-
ability RG(q), or simply R(q)), or

• two specific vertices s and t (called the termi-
nals) can communicate (two-terminal reliability
RG,s,t(q)), or

• a specific subset of vertices can communicate with
one another (K-terminal reliability, RG,K(q)).
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All of these polynomials (in variable q) are intractable,
that is, NP-hard (see [6]) Of course, there are other vari-
ants in the literature, some for node failures rather than
edge failures, some for directed graphs, and some that
allow for failure dependencies. A general reference is [6].

In our study of all-terminal reliability, we have been led
recently to propose a new variant of network robustness
based on an algorithmic procedure. Consider the follow-
ing edge deletion process: delete edges from the graph
at random, one at a time. Stop when the graph becomes
disconnected. Let sk denote the probability that under
the edge deletion process the process stops exactly after
k steps. What is the probability distribution of the sk’s?
Define

ψ =
∞∑
k=0

ksk (1.1)

to be the mean of sk. What can we say about ψ, the
average number of edge deletions to disconnection? How
does this measure relate (if at all) to the existing reli-
ability measures? We are interested in the answers to
these questions both for abstract graphs, as well as for
networks that appear in practice.

We remark that our interest grew out of a com-
mon Monte Carlo simulation of all-terminal reliability.
Namely, start with a (connected) graph G of order n and
size m (that is, with n vertices and m edges), a non-
negative integer k ∈ {0, 1, . . . ,m− n+ 1} and for a large
positive integer N , chose a random spanning subgraph of
G with m− k edges and determine the proportion rk of
such spanning subgraphs that are connected. This value
rk is an approximation to RG(k/m). A more efficient al-
gorithm is to chose the k edges sequentially for deletion
and stop when the graph becomes disconnected (as fur-
ther edge deletion cannot subsequently make the graph
connected!).

Let us begin with a couple of examples.
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Example 1 First of all, consider the cycle graph
Cn of order n. Clearly the removal of any single edge
does not disconnect the graph, but the removal of any
two edges does disconnect the graph. Thus s2 = 1 while
sk = 0 for all k 6= 2, and hence

ψ(Cn) =
∑

ksk = 2. (1.2)

Example 2 As another example, consider the graph H
of order 3, with vertices x1, y and x2, where each xi is
joined to y by l edges. It is not hard to see that

sk =


0 k < l
2l(k

l)
k(2l

l ) l ≤ k ≤ 2l − 1

0 k ≥ 2l

, (1.3)

and hence

ψ(H) =
2l−1∑
k=l

2l
(
k
l

)(2l
l

) = 2l2
l + 1 . (1.4)

While the definition of the sk’s and ψ do not, on the
surface, seem to relate to the all-terminal reliability (the
later is a polynomial in variable q), we shall see in the next
section that there is indeed a deep connection between
the two notions.

2. THE CONNECTIONS TO ALL-TERMINAL
RELIABILITY

The aim of this section is to quantify the connec-
tions between the edge deletion process, in terms of the
stochastic variable sk and the all-terminal reliability. We
will establish connections for three metrics related to the
all-terminal reliability: the average reliability (AR) of the
graph, the full all-terminal reliability polynomial of the
graph, and the 99-percentile value of the all-terminal re-
liability (the choice of the 99-percentile is arbitrary, but
is indicative of how reliable a network is expected to be
in practice).

We begin by enumerating a number of useful forms of
the all-terminal reliability polynomial. For a graph G of
order n and size m (here and elsewhere, we shall always
assume that any graph under question is connected), its
all-terminal reliability has the following forms (each is an
expansion of the polynomial under different bases for the
underlying vector space of polynomials, see [6]):

RG(q) =
m∑
i=0

Niq
m−i(1− q)i

=
m∑
i=0

Fiq
i(1− q)m−i

= 1−
m∑
i=0

Ciq
i(1− q)m−i

(2.5)

We refer to these as the N-, F-, and C-forms of the reli-
ability polynomial. The interpretation of the coefficients
is as follows:

• Ni counts the number of spanning connected sub-
graphs with i edges.

• Fi counts the number of spanning connected sub-
graphs with m− i edges.

• Ci counts the number of cut sets with i edges, that
is, the number of subsets of i edges whose removal
leaves the graph disconnected.

Of these three forms, the first two have attracted the
most attention in the literature. However, we will see
that the connection between the sk’s and all-terminal
reliability is most easily drawn with the C-form.

2.1. Connection with the average reliability of a
graph

Theorem 2.1. Let G be a graph having m edges. Re-
move edges from G at random and one at a time, until
the graph becomes disconnected. Let ψ be the average
number of edges thus removed. Then

ψ = (m+ 1)
1∫

0

R(q)dq. (2.6)

Theorem 2.1 states that ψ is m+ 1 times the average
of the all-terminal reliability polynomial over the interval
[0, 1]; the latter is known as the average reliability (AR)
of the graph, and has been studied in [7]. The average
reliability of a graph was proposed as a single numerical
measure of the robustness of a graph, and allows one to
search for the existence of an optimal graph with respect
to reliability (even when a graph optimal for all q ∈ [0, 1]
need not exist [8]) among all graphs with a given fixed
number of of vertices n and a fixed number of edges m.
We remark that the average reliability (and hence ψ) is
also known to be intractable [7].
Proof of Theorem 2.1 Define ck =

∑k
i=0 si. Then ck

is the probability that removing k random edges discon-
nects G. Furthermore, sk = ck − ck−1 and ck = Ck

(m
k ) ,

where, as in the C-form, Ck is the number of edge sub-
sets of size k whose deletion disconnects the graph. To
see the latter, note that if a subset S of k edges has the
property that G − S is disconnected, then this is true
under any edge ordering of S, so that

ck = Ck · k!
m(m− 1) · · · (m− k + 1) = Ck(

m
k

) .
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We now write the mean ψ as:

ψ =
m∑
0
ksk

= c1 − c0 + 2 (c2 − c1) + · · ·+m (cm − cm−1)
= −c0 − c1 − c2 − c3 − · · · − cm−1 +mcm

= −
m−1∑
k=0

Ck(
m
k

) +m

= m+ 1−
m∑
k=0

Ck(
m
k

)
On the other hand, from the C-form of the reliability,

R(q) = 1−
m∑
k=0

Ckq
k (1− q)m−k ,

so that, from the above formula for ψ,
1∫

0

R(q)dq = 1−
m∑
k=0

1∫
0

Ckq
k (1− q)m−k dq

= 1− 1
m+ 1

m∑
k=0

Ck(
m
k

)
= ψ

m+ 1 ,

where we used the fact (see, for example, [9]) that
for i ∈ {0, 1, . . . ,m}, the integral of the Bernstein ba-
sis polynomial [10] is

∫ 1
0
(
m
i

)
qi(1−q)m−idq = 1/(m+1).2

To illustrate the theorem, we again consider the
two examples from Section 1.

Example 1. For a cycle Cm we have R(q) =
(1 − q)m + mq(1 − q)m−1, and direct integration yields∫ 1

0 R(q)dq = 2
m+1 . On the other hand, removing any two

edges (and exactly two edges) results in disconnection,
so that ψ = 2, consistent with (2.6).

Example 2. For the graph H introduced in Section 1,
the reliability polynomial satisfies R(q) = (1− ql)2 while
m = 2l. We have

(m+ 1)
1∫

0

R(q)dq = (2l + 1)
1∫

0

(
1− ql

)2
dq = 2l2

l + 1 ,

consistent with the direct computations that ψ = 2l2
l+1 in

(1.4).

Theorem 2.1 gives a practical way to approximate
ψ for large graphs using Monte Carlo simulation without
computing the reliability polynomial explicitly, which in
general is intractable.

2.2. Connection with the all-terminal reliability
polynomial

We will now show an even deeper connection between
the edge-deletion process and the all-terminal reliability
polynomial. From the C-form of reliability, we can write

1−R(q) =
m∑
k=0

ck

(
m

k

)
qk (1− q)m−k . (2.7)

Note that
(
m
k

)
qk (1− q)m−k (k = 0, 1, . . . ,m) is a bino-

mial distribution. In the limit of large m, it converges
to a normal distribution of mean µ = qm and standard
deviation σ =

√
mq(1− q), so that

(
m
k

)
qk (1− q)m−k ∼

1√
2πσ exp

(
(µ−k)2

2σ2

)
. Recall that for any continuous func-

tion fk, Laplace’s method gives the asymptotics
∞∫

0

fk
1√
2πσ

exp
(

(µ− k)2

2σ2

)
dk ∼ fµ

assuming σ � µ (see for example [11]). Approximating
the sum in (2.7) by an integral then yields

m∑
k=0

ck

(
m

k

)
qk (1− q)m−k ∼

∞∫
0

ck
1√
2πσ

exp
(

(µ− k)2

2σ2

)
dk ∼ cµ

so that 1 − R(q) ∼ cµ, q = µ/m. Replacing µ by k so
that q = k/m, we obtain

ck ∼ 1−R(k/m). (2.8)

This means that the complement of the reliability poly-
nomial (i.e. 1−R(q)), is approximated by the normalized
histogram of the ck’s. To be more precise, assume we run
the edge deletion process M times and denote the num-
ber of times the process stops after exactly k steps by Sk.
Then we have sk = lim

M→∞
Sk

M and ck = lim
M→∞

1
M

∑k
i=0 Sk.

As a result, it follows from Eq.(2.8) that for large m, sk
approximates minus the reliability polynomial evaluated
at k/m, i.e.

sk ∼ −R′
(
k

m

)
. (2.9)

We now show that for sufficiently small values of k, ck
can underestimate the values of 1−R(k/m) while for suf-
ficiently large values of k overestimation can occur. Let
λ(G) denote the edge connectivity of a graph G. Then,
for graphs with λ > 1 then for any 1 ≤ k < λ it holds
that ck = 0, while 1 − R(k/m) > 0 although, in gen-
eral, the value is very small. On the other hand, for
k > m− n+ 1, the edge deletion process always discon-
nects the network hence for those k it holds that ck = 1,
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while 1−R(k/m) < 1 although, in general, the difference
is very small.

Finally, we can also use Eq.(2.8) to approximate the
99%-percentile of R(q). First determine the largest value
of k which satisfies ck ≤ 0.01 and denote this value by
k99%. Then q99% can be approximated by

q99% = k99%
m

. (2.10)

2.3. Validation on a synthetic and a real-world
network

First we validate the results obtained in this section
on a so-called crown graph. This graph is constructed
by taking a complete bipartite graph KN,2 and joining
the two nodes in the independent set of size 2, see Fig.1.
This graph has N + 2 nodes and 2N + 1 links, and will
be denoted as CrN+2.

0 5 10 15 20 25 30 35 40

mq

0

0.5

1

1-
R

(q
)

FIG. 1. Left: The crown graph Cr6. Right: Reliability poly-
nomial: exact (dashed line) compared with Monte Carlo sim-
ulation (yellow histogram), for Cr50 using M = 1000 simula-
tions

For the crown graph CrN+2, according to [12], we have

R(q) = (1− q)N ((1 + q)N − 2NqN+1) (2.11)

The explicit expression (2.11) allows us to obtain a
closed-form expression for ψ through (2.6):

ψ = Γ (N + 2)
Γ(N + 3/2)

(
1− 2−N−1)√π, (2.12)

where Γ is the Gamma function.
We now use (2.11) and (2.12) to validate Theorem 2.1

by means of Monte Carlo simulation, as shown in Fig-
ure 1. Taking N = 48, formula (2.12) yields ψexact =
12.4389. On the other hand, using M = 1000 Monte
Carlo simulations we obtained ψMC = 12.39, in excellent
agreement with the exact result. Finally, we use (2.11) to
determine q99% numerically by solving R(q) = 0.99. With
N = 48, (2.11) yields q99% = 0.014469, so that removing
k99% = 1.40 edges on average results in a 99% probability
of still being connected. According to Monte carlo sim-
ulation, there is about a 1.3% probability of disconnec-
tion after removing 2 edges (whereas removing one edge
never disconnects a crown graph). Using linear interpo-
lation, this yields k99%,MC ≈ 1.78. Note that the 99%

M 1000 2000 4000 8000 16000 32000
EM 0.1706 0.1225 0.0867 0.0620 0.0439 0.0310

TABLE I. RMSE as a functin of the number of simulations
M

threshold is in the very tail of the distribution, where the
Monte Carlo approximation to R(q) is degraded. Using
a 90% threshold instead, the exact formula (2.11) yields
k90%,exact = 4.589, compared to k90%,MC = 5.0364, a
better agreement (9.7% relative error for k90% instead of
27% for k99%).

Due to nature of MC simulation, the accuracy increases
with M but relatively slow. To measure the accuracy, let
Kj be the number of edges removed before the disconnec-
tion during simulation j. Define the Root Mean Square
Error (RMSE) as EM =

√∑M
j=1(ψexact −Kj)2/M . The

following table lists EM as a function of M . As expected,
square root scaling EM = O(N−1/2), typical of Monte
Carlo simulations, is observed.

Next we validate our results on a real-life network,
namely the DFN communication network from the In-
ternet Topology Zoo [13]. This network has n = 58
nodes and m = 87 edges. This network is small enough
to determine its reliability polynomial exactly. We used
the ReliabilityPolynomial command from Maple’s
GraphTheory package to do so. Figure 2 shows the
comparison between the normalized histogram for the
ck’s (computed using 1000 Monte Carlo simulations),
and 1 − R(q). Visually we see a good fit. In addition,
ψMC = 6.83 while ψexact = 6.896, so the relative error is
only about 1%. Similarly we obtain k99%,MC = 0.1252
while k99%,exact = 0.1190, a relative error of about 5%.

0 5 10 15 20
mq

0

0.2

0.4

0.6

0.8

1

1-
R

(q
)

DFN

n=58, m=87

0 5 10 15

degree
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FIG. 2. Top: The DFN network (consisting of 58 nodes and
87 edges) and its degree histogram. Reliability polynomial
(dashed line is 1−R(q) computed exactly) compared with the
CDF for the sk’s obtained through Monte Carlo simulations
(yellow histogram).
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3. ANALYTIC APPROXIMATIONS FOR
RELIABILITY POLYNOMIALS

So far we have compared the results obtained from the
edge deletion process for graphs for which an explicit ex-
pression for its reliability polynomial is available. How-
ever, in general such explicit expressions are intractable.
In this section we will introduce two closed-form approxi-
mations for R(q), which allow us to compare the results of
the edge deletion simulation with the performance met-
rics ψ and the 99%-percentile.

3.1. First and second order approximations

The probability of a single vertex being isolated is qd,
where d denotes the degree of the vertex. When q is
small and for a sufficiently dense graph, the probabil-
ity of having no isolated vertices asymptotically can be
approximated by

R1(q) :=
n∏
j=1

(
1− qdj

)
. (3.13)

This heuristic ignores any inter-dependence of the ver-
tices, but works well when the graph is sufficiently
“dense”. Note that (3.13) only depends on the degree se-
quence of the graph and not on its finer structure. This is
a property exhibited by the so-called “random configura-
tion model”, see e.g. [14–16] and references therein. For
sufficiently dense graphs, we use the heuristic that the
probability of being disconnected approaches the prob-
ability of having an isolated vertex. While the rigorous
justification of this heuristic remains an open problem,
it is similar to the classical results for the Erdős-Rényi
random graph model [17]. We will see below that R1
provides a good approximation to R for many realistic
networks as well as for random regular graphs of degree
3 or more.

A more accurate formula for R(q) also incorporates
the chance of having no isolated two-vertex subgraphs.
Given an edge, the chances that it is disconnected from
the graph is qa−2(1−q), where a is the sum of the degrees
of the vertices adjoining this edge. This leads to the
following, more accurate asymptotics: R ∼ R2, where

R2(q) :=
n∏
j=1

(
1− qdj

) m∏
j=1

(
1− qaj−2(1− q)

)
, (3.14)

where aj is the sum of degrees of the two vertices ad-
joining an edge j. Higher-order asymptotics can be writ-
ten by considering isolated graphs of 3 or more vertices.
However we will show in the next section that for most
practical examples we considered, R2 (and even R1) pro-
vides high accuracy.

The asymptotic formulae (3.13, 3.14) can also be used
to estimate ψ in (2.6), the expected number of edges that
need to be deleted in order to disconnect the network. We

have the following, increasingly accurate approximations
for ψ:

ψ1 := (m+ 1)
1∫

0

R1(q)dq; (3.15)

ψ2 := (m+ 1)
1∫

0

R2(q)dq; (3.16)

4. REGULAR GRAPHS

In this subsection we consider the special case of d-
regular graphs, in particular for large n. For this case,
the approximation Eq.(3.13) becomes

R1(q) = (1− qd)n (4.17)
whereas (3.14) yields

R2(q) = (1− qd)n(1− q2d−2(1− q))nd/2. (4.18)
From (4.17) we estimate:

q99% ∼ (1− (0.99)1/n)1/d (4.19)

To compute
∫ 1

0 R1(q)dq,we estimate (1 − qd)n ∼
exp

(
−nqd

)
, n� 1, so that

1∫
0

R1(q)dq ∼ 1
d

Γ(1/d)n−1/d, n� 1. (4.20)

Substitutingm = nd
2 for d-regular graphs into (2.6) yields

ψ ∼ ψ1 for n� 1 where:

ψ1 = n1−1/d

2 Γ
(

1
d

)
, n� 1 (4.21)

For example for a 3-regular graph, this estimate yields
ψ1 = 1.3394n2/3.

Next we compute the asymptotics to two orders. Ap-
plying Laplace’s method, we estimate:

1∫
0

R2(q)dq ∼
1∫

0

e−nq
d

e−n
d
2 q

2d−2(1−q)dq

= 1
d
n−1/d

n∫
0

e−xe−
d
2x

2−2/dn−1+2/d(1−x1/dn−1/d)x1/d−1dx

∼ 1
d
n−1/d

∞∫
0

e−x
(

1− d

2x
2−2/dn−1+2/d

)
x1/d−1dx

∼ 1
d
n−1/d

(
Γ (1/d)− d

2n
−1+2/dΓ (2− 1/d)

)
so to two orders in n, we obtain ψ ∼ ψ2 where

ψ2 = 1
2n

1−1/dΓ (1/d)− d

4n
1/dΓ (2− 1/d) . (4.22)
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FIG. 3. Comparison of Monte Carlo (using 1000 simulations) and asymptotic reliability computations for some real-world
networks. Figures show the full distribution sk obtained using Monte Carlo simulations, and visual comparison to asymptotics
(3.13), (3.14). The table shows numerical values for the averages as well as 99% threshold values.

5. VALIDATION OF THE APPROXIMATIONS
FOR THE RELIABILITY POLYNOMIALS

In this section we compare the outcomes of the edge
deletion process with the approximations Eqs.(3.13)-
(3.14) for the reliability polynomial.

5.1. Validation on real-world networks

In this subsection we consider a number of real-world
networks, taken from the Internet Topology Zoo [13] and
the Network Repository [18]. We apply Theorem 2.1 and
asymptotics (3.15) and (3.16) to several real-world net-

works; the results are presented in Figure 3 and Table
II. The column ψMC is computed using the Monte Carlo
method, averaged over 1000 simulations.

Columns ψ1 and ψ2 are asymptotic estimates as given
by (3.16). In addition, we include the reliability measure
q99%. Despite the diversity of networks presented in Fig-
ure 3, the asymptotics agree very well with Monte Carlo
simulations for all networks shown except “Singapore”,
which represents the subway network in Singapore. The
agreement breaks down for such network because it con-
sists of many “strings”: paths where each vertex has de-
gree at most two. We will discuss how to improve asymp-
totics of such “subway” networks in Section 6.

It is interesting to note that the approximations for
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Network n avg deg deg std ψMC ψ1 ψ2 q99% (MC) 99% (R1) 99% (R2)
Hagy 37 10.81 6.94 91.171 93.096 92.856 0.0928 0.0913 0.0913
ISNA 60 3.13 2.80 3.62 4.18812 3.98228 0.000404 0.000480 0.000459
Illinois 70 7.82 3.43 92.578 94.5861 93.8267 0.0636 0.0553 0.0553

Singapore 103 2.27 0.818 3.0090 8.1923 5.7095 0.00033 0.000901 0.0016
IEEE118 118 3.03 1.574 11.045 13.02 11.056 0.000868 0.00145 0.00110

Berlin 224 3.35 1.27 24.017 25.1483 24.1642 0.00115 0.00124 0.00124
US-air97 332 12.807 20.134 35.335 37.04 36.882 0.00014692 0.00018276 0.00018276

s838 512 3.12 1.63 15.39 20.5658 15.0196 0.000221 0.000306 0.000208
wikivote 7066 28.513 57.733 43.61 44.36 44.17 4.72E-06 4.45E-06 4.44E-06

ia-email-EU-def 32430 3.35 18.18 2.178 2.1407 2.13919 4.103E-07 4.03E-07 4.02E-07

TABLE II. Comparison of Monte Carlo and asymptotic estimates for selected real-world networks (see also Figure 3

q99% using either R1 or R2 give identical or nearly iden-
tical results (to all digits shown) in about half of the
cases.

5.2. Validation on regular graphs

FIG. 4. Comparison of Monte Carlo and asymptotic relia-
bility computations for random d-regular graphs, with d as
indicated and n = 100.

The following table shows the comparison between
asymptotic and Monte Carlo simulations for random

d-regular graphs (constructed using the configuration
model [16]) with n = 100 and d as indicated:

d ψ ψ1 ψ2 %err1 %err2 q99%,MC q99%,as

3 23.5 28.856 25.71 18% 8% 0.015 0.046
4 53.3 57.32 54.41 7% 2% 0.074 0.100
10 296 300.13 296.32 1.7% < 1% 0.3870 0.3983

TABLE III. Asymptotics vs. Monte Carlo results for regular
graphs

Here, ψ and q99,MC are computed using the Monte
Carlo method using 10000 realizations and is believed
to be accurate to within less than 1% (as validated by
averaging over several random subsets of simulations of
size 5000). The relative errors err1 = 1 − ψ/ψ1 and
err2 = 1 − ψ/ψ2, are also shown. Note that for d = 3,
ψ1 captures about 82% of cases, whereas getting either
an isolated vertex or an isolated 2-graph captures 92%
of all cases (the remaining cases correspond to getting
an isolated 3-graph and higher). As the graph density is
increased, disconnection due to isolated vertices captures
more and more cases; e.g. it captures>98% of cases when
d = 10.

The last two columns in Table III show the 99-
percentile, computed using Monte Carlo simulation
(q99%,MC) and the asymptotic approximation in formula
(4.19) (q99%,as). We observe an increasing accuracy of the
asymptotics with increased d. The agreement for q99% is
rather poor when d = 3 and n = 100 because in that
case mq99%,as ≈ 2, which is rather small (at the very tail
of the distribution). The agreement is much better when
d = 10.
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6. SUBWAY-LIKE NETWORKS

As seen in Figure 3, the asymptotics (3.13) break down
for the subway network of Singapore. It is characterized
by many paths made of consecutive vertices of degree-
two, interspersed with a few transfer stations that have
higher degree. We will refer to these types of networks as
the “subway-type” network [19]. For this type of network,
the breakdown of connectivity is most likely to happen
because one of the “paths” gets disconnected, rather than
getting an isolated vertex. This is the reason why R1 or
R2 fail to estimate reliability in this case.

To obtain a better estimate of ψ for “subway-type” net-
works, we first process the graph by removing the “one-
shell” from the graph as follows. Remove all vertices of
degree one and its associated edge from the graph. Re-
peat, until there are no more vertices of degree one. If
the reliability polynomial of the graph with the one-shell
removed is R(q), then the reliability polynomial of the
original graph is (1 − q)KR(q), where K is the number
of edges/vertices in the one-shell that were removed.

In what follows, we shall assume without loss of gen-
erality that the one-shell has been removed to simplify
the computation. We first compute the probability that
in a single path consisting of l edges, some vertex cannot
communicate with either of the end terminals. This prob-
ability corresponds to failure of at least two edges along
this path. The probability of such a failure is thus given
by 1 − pl − lpl−1q where p = 1 − q. This yields the fol-
lowing estimate for the reliability polynomial R ∼ Rshell
for subway-type networks:

Rshell(q) =
∏
j

((1− q)lj + (1− q)lj−1qlj) (6.23)

where the product is taken over all the paths (consisting
of vertices of degree 2 inside the graph, and with lj being
the number of edges in such a path.

FIG. 5. Left: Subway-type network “Singapore”, with one-
shell removed. Right: Comparision of Monte Carlo simula-
tion and approximations to the reliability polynomials (3.13),
(3.14) and (6.23), as well as their averages.

The corresponding estimate for ψ becomes

ψs = (m+ 1)
1∫

0

Rshell(q)dq. (6.24)

The function Rshell(q) and the corresponding ψs is shown
in Figure 5. As can be seen, ψs does a much better job
for subway-type graphs than either ψ1 or ψ2.

Finally, the two asymptotics (isolated vertex, path fail-
ure) can be combined for an even better approximation,
but we do not pursue this further here.

7. DISCUSSION

Graph connectivity is an important measure in net-
work theory. In this work, we have presented a simple
Monte Carlo algorithm which consists of removing edges
at random until the graph becomes disconnected. As the
number of simulations increases, this method recovers
exactly the average of the reliability polynomial. It can
also be used to estimate the full reliability polynomial,
whose exact computation is an NP-complete problem.
We presented simple asymptotic estimates for reliabil-
ity polynomial of sufficiently dense graphs, based on the
probability of getting an isolated vertex or a two-vertex
graph. For sparse “subway-type” networks, we presented
a different estimate based on the number of loops in the
graph. All of these estimates have been shown to work
for many real-world networks as well as random regular
graphs.

We end this paper with some open questions and
conjectures.

Open question 1: Choose a random graph con-
sisting of n1 vertices of degree 2, and n2 vertices of
degree 3. Suppose that n1 � n2, in which case the
graph is subway-like. What are the asymptotics of AR
in this case?

Open question 2 What is the average reliability
of Erdős-Rényi graphs? The degree distribution is
Poisson in this case.

More generally, what is the “best” degree distribution
if we wish to optimize AR?

Open question 3. Among all graphs on fixed
number of n vertices and m edges, what is the graph
that maximizes AR?

Consider the case of n = 12 and m = 18 (which in-
cludes all cubic graphs of 12 vertices). We used Brendon
McKay program Nauty [20] to generate a total of about
2 × 107 such graphs. Further restricting to only graphs
whose vertices have a minimum degree of 2 yields about
2 million graphs. By contrast, there are only 87 cubic
graphs on 12 vertices. Figure 6 shows the plot of AR
versus the algebraic connectivity (AC) for this collection
of graphs.

The unique maximizer of AR=0.350925 has
AC=1.467911, which is the second-highest AC. The
unique maximizer of AC=1.438447 has AR=0.350792,
which is the second-highest AR. Among high-AR graphs,
the first 28 are cubic, having AR from 0.3509 to 0.3429.
The highest non-cubic graph has AR of 0.34121, and has
the girth of 5. By contrast, there are many non-cubic
graphs with high AC; among the 30 graphs having the
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highest AC, only 2 are cubic. In terms of girth, there
are a total of 7 girth-5 graphs, two of which are cubic.

FIG. 6. Algebraic connectivity (AC) versus average reli-
ability (AR) for all connected graphs on 12 vertices and 18
edges with miminum degree 2. There is a total 2189608 such
graphs, of which 7 have girth 5, 74021 have girth 4, and the
remaining 2115580 graphs have girth 3.

Based on these observations, we propose the following
conjecture.

Conjecture 1. Among all the graphs of fixed number
of nodes n and fixed integer average degree d, the graph
that maximizes AR is a d−regular graph.

Finally, let us mention some related problems. In [21,
22], the authors modelled human frailty and death events
using complex scale-free networks. In their model, nodes
are damaged at random (simulating an ageing process)
until too much damage is accumulated in the main nodes.
It would be interesting to derive the asymptotics of their
model.

Network reliability also has a connection with perco-
lation theory. The percolation process can be viewed as
a version of the edge removal process on a grid but with
a different termination condition, namely the emergence
of a giant component, rather than the network becoming
disconnected [23]. Depending on the situation, this may
be a better measure of network reliability than a simple
disconnection threshold.

Finally, our approach for analysing network reliability
can also be applied to the computation of two-terminal
reliability [6].
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