Vortex dynamics, animal skin patterns, and ice fishing

Theodore Kolokolnikov

Joint works with Michael Ward and Juncheng Wei, Yuxin Chen, Daniel Zhirov, Ricardo Carretero, Panoyatis Keverkedis
Vortex dynamics

- Equations first given by Helmholtz (1858): each vortex generates a rotational velocity field which advects all other vortices. **Vortex model:**

 \[
 \frac{dz_j}{dt} = i \sum_{k \neq j} \gamma_k \frac{z_j - z_k}{|z_j - z_k|^2}, \quad j = 1 \ldots N.
 \]

- Classical problem; observed in many physical experiments: floating magnetized needles (Meyer, 1876); Malmberg-Penning trap (Durkin & Fajans, 2000), Bose-Einstein Condensates (Ketterle et.al. 2001); magnetized rotating disks (Whitesides et.al, 2001)

- Conservative, Hamiltonian system

- General initial conditions lead to chaos: *movie — chaos*

- Certain special configurations are “stable” in Hamiltonian sense: *movie — stable*

- Rigidly rotating steady states are called **relative equilibria:**

 \[
 z_j(t) = e^{\omega t} \xi_j \iff 0 = \sum_{k \neq j} \gamma_k \frac{\xi_j - \xi_k}{|\xi_j - \xi_k|^2} - \omega \xi_j
 \]
Dynamic, self-assembled aggregates of magnetized, millimeter-sized objects rotating at the liquid-air interface: Macroscopic, two-dimensional classical artificial atoms and molecules

Bartosz A. Grzybowski,1 Xingyu Jiang,1 Howard A. Stone,2 and George M. Whitesides1,2
1Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
2Division of Engineering and Applied Sciences, Harvard University, Pierce Hall, Cambridge, Massachusetts 02138
(Received 3 October 2000; published 21 June 2001)

Figure 1 Experimental set-up and magnetic force profiles. (a) A scheme of the experimental set-up. A bar magnet rotates at angular velocity ω below a dish filled with lid (typically ethylene glycol/water or glycerine/water solutions). Magnetically doped ss are placed on the liquid–air interface, and are fully immersed in the liquid except for r top surface. The disks spin at angular velocity ω around their axes. A magnetic force attracts the disks towards the centre of the dish, and a hydrodynamic force F_T pushes...
Fig. 1. Observation of vortex lattices. The examples shown contain approximately (A) 16, (B) 32, (C) 80, and (D) 130 vortices. The vortices have "crystallized" in a triangular pattern. The diameter of the cloud in (D) was 1 mm after ballistic expansion, which represents a magnification of 20. Slight asymmetries in the density distribution were due to absorption of the optical pumping light.
Campbell and Ziff (1978) classified many stable configurations for small (e.g. \(N = 18 \)) number of vortices of equal strength.

Goal: describe the stable configuration in the continuum limit of a large number of vortices \(N \) (e.g. \(N = 100, 1000 \ldots \)). These have been observed in several recent experiments: Bose Einstein Condensates, magnetized disks.
Key observation

Vortex model: \[\frac{dz_j}{dt} = i \sum_{k \neq j} \gamma_k \frac{z_j - z_k}{|z_j - z_k|^2}, \quad j = 1 \ldots N. \tag{V} \]

Relative equilibrium: \[z_j(t) = e^{\omega it} \xi_j \iff 0 = \sum_{k \neq j} \gamma_k \frac{\xi_j - \xi_k}{|\xi_j - \xi_k|^2} - \omega \xi_j \]

Aggregation model: \[\frac{dx_j}{dt} = \sum_{k \neq j} \gamma_k \frac{x_j - x_k}{|x_j - x_k|^2} - \omega x_j. \tag{A} \]

- One-to-one correspondence between the steady states \(x_j(t) = \xi_j \) of (A) and the relative equilibrium \(z_j(t) = e^{\omega it} \xi_j \) of (V).

- **Spectral equivalence of (V) and (A):** The equilibrium \(x_j(t) = \xi_j \) is asymptotically stable for the aggregation model (A) if and only if the relative equilibrium \(z_j(t) = e^{\omega it} \xi_j \) is stable (neutrally, in the Hamiltonian sense) for the vortex model (V).

- Aggregation model fully describes relative equilibria and their linear stability in the vortex model.

- Aggregation model is easier to study than the vortex model.
Vortices of equal strength $\gamma_k = \gamma$

$$\frac{dz_j}{dt} = i\gamma \sum_{k \neq j} \frac{z_j - z_k}{|z_j - z_k|^2}, \quad j = 1 \ldots N.$$

- In the limit $N \to \infty$, the steady state density of (A) is constant inside the ball of radius

$$R_0 = \sqrt{N\gamma/\omega}.$$

Fig. 1. Stable relative equilibria of $N = 25, 50$ and 200 vortices of equal strength. The dashed line shows the analytical prediction $R_0 = \sqrt{N\gamma/\omega}$ of the swarm radius in the $N \to \infty$ limit (see (6)).
Connection to the biological aggregation model

- [FKH, 2011] Multi-particle interaction model:

\[
\frac{dx_j}{dt} = \frac{1}{N} \sum_{k \neq j} \frac{x_j - x_k}{|x_j - x_k|^2} - x_j, \quad j = 1 \ldots N. \tag{1}
\]

\[
\text{Newtonian repulsion} \quad \text{Linear attraction} \tag{2}
\]

- This is just the first two terms of the ice-fishing problem (no reflection in the boundary)
- This model results in a **constant density swarm.**

- **Newtonian** repulsion, **linear** attraction.
- In the limit \(N \rightarrow \infty \), the density is constant inside a ball of radius 1; zero outside.
Continuum limit

- We define the **density** ρ as

$$\int_D \rho(x) \, dx \approx \frac{\# \text{particles inside domain } D}{N}$$

- The flow is then characterized by density ρ and velocity field v:

$$\rho_t + \nabla \cdot (\rho v) = 0; \quad v(x) = \int_{\mathbb{R}^n} \left(\frac{x - y}{|x - y|^2} - x - y \right) \rho(y) \, dy.$$ \hspace{1cm} (3)

- We have

$$v(x) = \int \nabla_x \left(\log |x - y| - \frac{1}{2} |x - y|^2 \right) \rho(y) \, dy$$

$$\nabla \cdot v = \int (2\pi \delta(x - y) - 2) \rho(y) \, dy$$

$$= 2\pi \rho(x) - 2M$$
• Inside, the swarm, $\nabla \cdot v = 0 \implies \rho = M/\pi$ is constant!

• Radius is determined by conservation of mass: $M = \rho \pi R^2 \implies R = 1$.
$N + 1$ problem

- N vortices of equal strength and a single vortex of a much higher strength:

$$\frac{dx_j}{dt} = \frac{a}{N} \sum_{k=1 \ldots N, k \neq j} \frac{x_j - x_k}{|x_j - x_k|^2} + b \frac{x_j - \eta}{|x_j - \eta|^2} - x_j, \quad j = 1 \ldots N, \quad (4)$$

$$\frac{d\eta}{dt} = \frac{a}{N} \sum_{k=1 \ldots N} \frac{\eta - x_k}{|\eta - x_k|^2} - \eta \quad (5)$$

- Mean-field limit $N \to \infty$:

$$\begin{cases}
\rho_t + \nabla \cdot (\rho \nabla v) = 0; \\
v(x) = a \int_{\mathbb{R}^2} \rho(y) \frac{x-y}{|x-y|^2} dy + b \frac{x-\eta}{|x-\eta|^2} - x. \\
\frac{d\eta}{dt} = a \int_{\mathbb{R}^2} \rho(y) \frac{\eta-y}{|\eta-y|^2} dy - \eta \end{cases} \quad (6)$$

- Main result:. Define $R_1 = \sqrt{b}$, $R_0 = \sqrt{a + b}$ and suppose that η is any point such that $B_{R_1}(\eta) \subset B_{R_0}(0)$. Then the equilibrium solution for (6) is constant inside $B_{R_0}(0) \setminus B_{R_1}(\eta)$ and is zero outside.
Unlike the $N+0$ problem, the relative equilibrium for the $N+1$ problem is non-unique: any choice of η yields a steady state as long as $|\eta| < R_0 - R_1$.
Degenerate case: big central vortex

- Small vortices are constrained to a ring of radius R_0. with big vortex at the center.

- **Non-uniform** distribution of small particles!

- Question: Determine the size of the gap Θ_{gap}.
Main Result:

\[\Theta_{gap} \sim C N^{-1/3}. \]

where the constant \(C = 8.244 \) satisfies

\[
(8 - 6u + 2u^3) \ln(u - 1) = 3u(u^2 - 4); \quad C = 2 \left(\frac{6\pi(2 - u)}{u(u^2 - 1)} \right)^{1/3}
\]
Sketch of proof

- [Barry+Wayne, 2012]: Set \(x_j(t) \sim R_0 e^{i\theta_j(t)} \) then at leading order we get

\[
\frac{d\theta_j}{dt} = \frac{1}{N} \sum_{k \neq j} \left(\frac{\sin(\theta_j - \theta_k)}{2 - 2 \cos(\theta_j - \theta_k)} - \sin(\theta_j - \theta_k) \right).
\]
(7)

- In the mean-field limit \(N \to \infty \), the density distribution \(\rho(\theta) \) for the angles \(\theta_j \) satisfies

\[
\begin{cases}
\rho_t + (\rho v_\theta)_\theta = 0, \\
v(\theta) = PV \int_{-\pi}^{\pi} \rho(\phi) \left(\frac{\sin(\theta - \phi)}{2 - 2 \cos(\theta - \phi)} - \sin(\theta - \phi) \right) d\phi,
\end{cases}
\]
(8)

where \(PV \) denotes the principal value integral, and \(\int_{-\pi}^{\pi} \rho = 1 \).

- [Barry, PhD Thesis]: Up to rotations, the steady state density \(\rho(\theta) \) for which \(v = 0 \) must be of the form

\[
\rho(\theta) = \frac{1}{2\pi} \left(1 + \alpha \cos \theta \right).
\]
(9)

This follows from (8) and (formal) expansion

\[
\frac{\sin t}{2 - 2 \cos t} - \sin t = \sin(2t) + \sin(3t) + \sin(4t) + \ldots
\]
• α is free parameter in the continuum limit.

• For discrete N, particle positions satisfy

$$\int_{\theta_{j-1}}^{\theta_j} \frac{1}{2\pi} (1 + \alpha \cos \theta) \, d\theta = \frac{1}{N}$$

To estimate Φ_{gap}, choose θ_1 so that $v(\theta_1) \sim 0$. See our paper for hairy details.
N + K problem

\[v(x) = a \int_{\mathbb{R}^2} \rho(y) \frac{x - y}{|x - y|^2} dy + \sum_{k=1}^{K} b_k \frac{x - \eta_k}{|x - \eta_k|^2} - x, \]

\[\frac{d\eta_j}{dt} = a \int_{\mathbb{R}^2} \rho(y) \frac{\eta_k - y}{|\eta_k - y|^2} dy + \sum_{\substack{k=1 \ldots K \atop k \neq j}} b_k \frac{\eta_j - \eta_k}{|\eta_j - \eta_k|^2} - \eta_j, \]

\[j = 1 \ldots K. \]

Main result: Let \(R_k = \sqrt{b_k}, \ k = 1 \ldots K \) and \(R_0 = \sqrt{a + b_1 + \ldots + b_K} \). Suppose \(\eta_1 \ldots \eta_K \) are such \(B_{R_1}(\eta_1) \ldots B_{R_K}(\eta_K) \) are all disjoint and are contained inside \(B_{R_0}(0) \). The equilibrium density is constant inside \(B_{R_0}(0) \setminus \bigcup_{k=1}^{K} B_{R_k}(\eta_k) \) and is zero outside.
\(N + K \) problem, with very large \(K \) vortices

- The \textbf{blue ellipse} is described by the reduced system

\[
\frac{d\xi_j}{dt} = \frac{1}{N} \sum_{k=1, k \neq j}^{N} \frac{1}{\xi_j - \xi_k} + \frac{1}{2} \xi_k - \xi_k
\]

- From [K, Huang, Fetecau, 2001], its axis ratio is 3.
Crystallization

Vortex model: \[\frac{dz_j}{dt} = i \sum_{k \neq j} \gamma_k \frac{z_j - z_k}{|z_j - z_k|^2}, \quad j = 1 \ldots N. \quad (V) \]

Relative equilibria: \[z_j(t) = e^{\omega it} \xi_j \iff 0 = \sum_{k \neq j} \gamma_k \frac{\xi_j - \xi_k}{|\xi_j - \xi_k|^2} - \omega \xi_j \]

Vortex with dissipation: \[\frac{dz_j}{dt} = i \sum_{k \neq j} \gamma_k \frac{z_j - z_k}{|z_j - z_k|^2} + \mu \left(\sum_{k \neq j} \gamma_k \frac{z_j - z_k}{|z_j - z_k|^2} - \omega z_j \right) \quad (D) \]

• In many physical experiments of BEC there is damping or dissipation involved.

• **Spectral equivalence:** Relative equilibria and their stability are the same for (V) and (D).

• Both the vortex model and the “aggregation model” model are limiting cases of (D).

• Taking \(\mu > 0 \) stabilizes vortex dynamics! chaos damped stable

• This allows us to find stable relative equilibria numerically.
Vortex dynamics in BEC with trap

- For BEC, dynamics have extra term corresponding to precession around the trap:

\[\dot{z}_j = i \frac{a}{1 - r^2} z_j + iC \sum_{k \neq j} \frac{z_j - z_k}{|z_j - z_k|^2}, \quad j = 1 \ldots N. \tag{11} \]

\[\text{trap-interaction} \quad \text{self-interaction} \]

- Large \(N \) limit: \textbf{non-uniform} vortex lattice:

\[
\rho \sim \omega - \frac{a}{(1 - r^2)^2} \quad \text{if} \quad r < R, \quad \rho = 0 \quad \text{otherwise},
\]

with \(\omega = \frac{a}{1 - R^2} + \frac{cN}{R^2} \)
\[\omega_c = \left(\sqrt{a} + \sqrt{cN} \right)^2; \quad R_c^2 = \frac{\sqrt{cN}}{\sqrt{a} + \sqrt{cN}}. \]

- No solutions of \(\omega < \omega_c \)
- Two solutions \(R = R_\pm \) if \(\omega > \omega_c \), smaller is stable, larger unstable.
N-body problem

\[\dot{z}_j = \sum_{k \neq j} c_k c_j \frac{z_k - z_j}{|z_k - z_j|^3} \]

(12)

- Relative equilibria \(z_j = e^{i\omega t} x_j \) satisfy:

\[0 = \sum_{k \neq j} c_k c_j \frac{x_k - x_j}{|x_k - x_j|^3} + \omega^2 x_j \]

(13)

- Gradient flow (to find steady states):

\[-\dot{x}_j = \sum_{k \neq j} c_k c_j \frac{x_k - x_j}{|x_k - x_j|^3} + \omega^2 x_j \]

(14)
• For N equal-mass bodies, the relative equilibrium is known to be unstable when $N \geq 3$.

• Unlike the vortex model, there is no spectral equivalence between (12) and (14)
Spot solutions in Reaction-diffusion systems

seashells * fish * crime hotspots in LA * stressed bacterial colony
Classical Gierer-Meinhardt model

\[A_t = \varepsilon^2 \Delta A - A + \frac{A^2}{H}; \quad \tau H_t = D \Delta H - H + A^2 \]

- Introduced in 1970's to model cell differentiation in hydra
- Mostly of mathematical interest: one of the simplest RD systems
- Has been intensively studied since 1990's [by mathematicians!]
- Key assumption: separation of scales

\[\varepsilon \ll 1 \text{ and } \varepsilon^2 \ll D. \]
• Roughly speaking, H is constant on the scale of A so the steady state looks "roughly" like $A(x) \sim Cw \left(\frac{x - x_0}{\varepsilon} \right)$ where

$$\Delta w - w + w^2 = 0.$$

• Questions: What about stability? What about location of the spike x_0?
“Classical” Results in 1D:

• Wei 97, 99, Iron+Wei+Ward 2000: Stability of K spikes in the GM model in one dimension

• Two types of possible instabilities: structural instabilities or translational instabilities

• Structural instabilities (large eigenvalues) lead to spike collapse in $O(1)$ time

• Translational instabilities can lead to ”slow death”: spikes drift over large time scales

• **Main result 1**: There exists a sequence of thresholds D_K such that K spikes are stable iff $D < D_K$.

• **Main result 2**: Slow dynamics of K spikes is described by an ODE with $2K$ variables (spike heights and centers) subject to K algebraic constraints between these variables.
Large eigenvalues

• Careful derivation leads to a nonlocal eigenvalue problem (NLEP) of the form

\[
\lambda \phi = \Delta \phi + (-1 + 2w) \phi - \chi w^2 \frac{\int w \phi}{\int w^2}; \quad \chi := \frac{4 \sinh^2 \left(\frac{1}{\sqrt{D}} \right)}{2 \sinh^2 \left(\frac{1}{\sqrt{D}} \right) + 1 - \cos \left[\pi (1 - 1/K) \right]}
\]

• Key theorem (Wei, 99): \(\text{Re}(\lambda) < 0 \) iff \(\chi < 1 \)

• Corollary: On a domain \([-1, 1]\), large eigenvalues are stable iff \(D < D_{K,\text{large}} \) where

\[
D_{K,\text{large}} = \frac{1}{\arcsinh^2 (\sin 2\pi / K)}
\]

• When unstable, this can lead to competition instability.

• Movies: stable; unstable
Small eigenvalues

- Causes a very slow drift

- Iron-Ward-Wei 2000: The slow dynamics of the system can be reduced to a coupled algebraic-differential system of ODEs

- Movie: slow drift
Two dimensions

- Structural stability is similar

\[
\frac{dx_0}{dt} \sim -\frac{4\pi \varepsilon^2}{\ln \varepsilon^{-1} + 2\pi R_0} \nabla R_0
\]

where

\[
R_0 = \lim_{x \to x_0} \left[G(x, x_0) + \frac{1}{2\pi} \ln(|x - x_0|) \right];
\]

\[
\nabla R_0 = \lim_{x \to x_0} \nabla_x \left[G(x, x_0) + \frac{1}{2\pi} \ln(|x - x_0|) \right];
\]

\[
\Delta G - \frac{1}{D} G = -\delta (x - x_0) \text{ on } \Omega; \quad \partial_n G = 0 \text{ on } \partial\Omega
\]

- Equilibrium location \(x_0 \) satisfies \(\nabla R_0 = 0 \), occurs at the extremum of the regular part of the Neumann's Green's function
Dumbbell-shaped domain

- QUESTION: Suppose that a domain has a dumb-bell shape. Where will the spike drift??

- What are the possible equilibrium locations for a single spike?
Small D limit

- If D is very small, $R_0(x_0) \sim C(x_0) \exp \left(-\frac{1}{\sqrt{D}} |x_0 - x_m| \right)$ where x_m is the point on the boundary closest to x_0

- This means that R_0 is minimized at the point furthest away from the boundary when $D \ll 1$
 - In the limit $\varepsilon^2 \ll D \ll 1$, the spike drifts towards the point furthest away from the boundary.
 - For a dumbbell-shaped domain above, the three possible equilibria are at the "centers" of the dumbbells (stable) and at the center of the neck (unstable saddle point)
 - For multiple spikes, their locations solve "ball-packing problem".

- Movie: $D = 0.03, \varepsilon = 0.04$
Large D limit

- We get the modified Green’s function:
 \[
 \Delta G_m - \frac{1}{|\Omega|} = -\delta(x - x_0) \text{ inside } \Omega, \quad \partial_n G = 0 \text{ on } \partial\Omega;
 \]

 \[
 R_{m0} = \lim_{x \to x_0} \left[G_m(x, x_0) + \frac{1}{2\pi} \ln(|x - x_0|) \right].
 \]

- [K, Ward, 2003]: For a domain which is an analytic mapping of a unit disk, \(\Omega = f(B) \), we derive an exact formula for \(\nabla R_{m0} \) in terms of the residues of \(f(z) \) outside the unit disk.

- Take \(f(z) = \frac{(1 - a^2)z}{z^2 + a^2} \); \(x_0 = f(z_0) \):
Then

\[\nabla R_{m0}(x_0) = \frac{\nabla s(z_0)}{f'(z_0)} \]

where

\[
\nabla s(z_0) = \frac{1}{2\pi} \left(\frac{z_0}{1 - |z_0|^2} - \frac{(\bar{z}_0^2 + 3a^2)\bar{z}_0}{\bar{z}_0^4 - a^4} + \frac{a^2\bar{z}_0}{\bar{z}_0^2a^2 - 1} + \frac{\bar{z}_0}{\bar{z}_0^2 - a^2} \right)
\]

• Corollary: for above Ω, \(\nabla R_{m0} \) has a unique root at the origin!

 - In the limit \(D \gg 1 \), all spikes will drift towards the neck.

• Complex bifurcation diagram as \(D \) is increased.

• Movie: \(\varepsilon = 0.05, \; D = 0.1; \; D = 1. \)
"Huge" D

- In the limit $D \to \infty$, (Shadow limit), an interior spike is unstable and moves towards the boundary [Iron Ward 2000; Ni, Poláčik, Yanagida, 2001].

- For \textbf{exponentially large but finite} $D = O(\exp(-C/\varepsilon))$, boundary effects will compete with the Green's function.

- [K, Ward, 2004]: Define

\[
\sigma := \frac{\varepsilon}{2} \ln \left(\frac{C_0}{|\Omega|} D \varepsilon^{-1/2} \right); \quad C_0 \approx 334.80;
\]

Then the spike will move towards the boundary whenever its distance from the closest point of the boundary is at most σ; otherwise it will move away from the boundary.

- \textbf{Movies}: $\varepsilon = 0.05$, $D = 10$; $D = 100$
Spike dynamics inside a disk

In the limit $\varepsilon \ll 1, D \gg 1$, inside the disk we get

$$C \frac{dx_j}{dt} \sim 2 \sum_{k \neq j} \frac{x_j - x_k}{|x_j - x_k|^2} - \sum_k x_j + \sum_k \frac{x_j - x_k/|x_k|^2}{|x_j - x_k/|x_k|^2|^2} - \sum_k -\frac{x_j |x_k|^2 + x_k |x_j|^2}{|x_j |x_k|^2 - x_k^2}. $$

The first two terms are identical to vortex stability model!

The last two terms represent “reflection in the wall”

Just like for vortex model, the steady state consists of uniformly-distributed particles inside the domain!

Movies: disk; dumbbell.
Mean first passage time (ice fishing)

- Question: Suppose you want to catch a fish in a lake covered by ice. Where do you drill a hole to maximize your chances?

- Related questions: cell signalling; oxygen transport in muscle tissues; cooling rods in a nuclear reactor...

- Consider N non-overlapping small "holes" each of small radius ε. A particle is performing a random walk inside the domain Ω. If it hits a hole, it gets destroyed; if it hits a boundary, it gets reflected. Question: what is the expected lifetime of the wondering particle? How do we place the holes to minimize this lifetime [i.e. catch the fish, cool the nuclear reactor...]?
The expected lifetime is proportional to $1/\lambda$ where λ is the smallest eigenvalue of the problem:

$$\Delta u + \lambda u = 0 \text{ inside } \Omega \setminus \Omega_p; \quad u = 0 \text{ on } \partial \Omega_p; \quad \partial_n u = 0 \text{ on } \partial \Omega$$

where $\Omega_p = \bigcup_{i=1}^{N} \Omega_\varepsilon$.

[K-Ward-Titcombe, 2005]: The smallest eigenvalue is given by

$$\lambda \sim \frac{2\pi N}{\ln \frac{1}{\varepsilon}} \left(1 - \frac{2\pi}{\ln \frac{1}{\varepsilon}} p(x_1, \ldots x_N) + O \left(\frac{1}{(\ln \frac{1}{\varepsilon})^2} \right) \right)$$

where

$$p(x_1, \ldots x_N) := \sum \sum G_{ij};$$

$$G_{ij} = \begin{cases} G_m(x_i, x_j) & \text{if } i \neq j \\ R_m(x_i, x_i) & \text{if } i = j \end{cases}$$

$$\Delta G_m(x, x') - \frac{1}{|\Omega|} = -\delta(x - x') \text{ inside } \Omega, \quad \partial_n G = 0 \text{ on } \partial \Omega; \quad R_m \equiv \text{reg.part}$$

For a unit disk:

$$2\pi G_m(x, x') = -\ln |x - x'| - \ln \left| x \frac{x'}{|x'|} \right| - \frac{x'}{|x'|} + \frac{1}{2} \left(|x|^2 + |x'|^2 \right)$$

$$2\pi R_m(x, x') = -\ln \left| x \frac{x'}{|x'|} - \frac{x'}{|x'|} \right| + \frac{1}{2} \left(|x|^2 + |x'|^2 \right)$$

The optimum trap placement is at the minimum of $p(x_1, \ldots x_N)$.
Disk domain, N holes

We need to minimize

$$p(x_1 \ldots x_N) = -\sum_{j \neq k} \ln |x_j - x_k| - \sum_{j,k} \left(\ln \left| x_j - \frac{x_k}{|x_k|^2} \right| + \ln |x_k| \right) + \frac{1}{2} \sum_{j,k} \left(|x_j|^2 + |x_k|^2 \right)$$

Gradient flow is uniform swarm model plus two extra terms

$$\frac{dx_j}{dt} = 2 \sum_{k \neq j} \frac{x_j - x_k}{|x_j - x_k|^2} - \sum_k x_j + \sum_k \frac{x_j - x_k/|x_k|^2}{|x_j - x_k/|x_k|^2|^2} - \sum_k \frac{-x_j |x_k|^2 + x_k |x_j|^2}{|x_k|^2 - x_j|^2}.$$

Particles on a ring: $x_k = r e^{i k 2\pi / N}$. The min occurs when

$$\frac{r^{2N}}{1 - r^{2N}} = \frac{N - 1}{2N} - r^2$$

Note that $r \to 1/\sqrt{2}$ as $N \to \infty$; the optimal ring divides the unit disk into two equal areas.

Particles on 2,3,... m rings: Similar results are derived with complicated but numerically useful formulas.
Constrained optimization on up to 3 rings
Full optimization of K traps

6 (−1.526) 7 (−1.8871) 8 (−2.2538) 9 (−2.6104) 10 (−2.976)
11 (−3.3562) 12 (−3.7593) 13 (−4.1552) 14 (−4.5683) 15 (−4.975)
16 (−5.3914) 17 (−5.8051) 18 (−6.2245) 19 (−6.6731) 20 (−7.1071)
21 (−7.5489) 22 (−7.985) 23 (−8.4207) 24 (−8.8693) 25 (−9.3178)
Comparison

10, -2.96861, -2.976

15, -4.97285, -4.97502

13, -4.1511, -4.15515

24, -8.85623, -8.86797
Conclusion

• We looked at three very different problems: vortex dynamics; spike dynamics and first mean-passage time

• All three problems reduce to nonlocal particle aggregation model with Newtonian repulsion

• In the limit of large number of particles, the steady state approaches a uniform distribution.

• Spectral equivalence of aggregation and vortex model shows stability

These papers are available for download from my website: http://www.mathstat.dal.ca/~tkolokol

Thank you! Any questions?