
Notes for Kadison and Ringrose, Volume 1
Tom Potter

Note on the notes
These notes are a work in progress (begun late August 2019), and will be added

to periodically when I have time to type. Intended to clarify any areas in the text I

found tricky or terse. Math books are sufficiently difficult that glosses, annotations,

or “helps” can be useful, particularly to oneself at a later time.

Section 2.6
In Example 2.6.11, it is stated that K0 is everywhere dense in K since it contains

the characteristic function of every measurable rectangle of finite measure. Recall

that K = L2(S × S ′,S × S ′,m × m′). This seems pretty intuitive, but how to

verify it rigorously? Here are two approaches:

(i) One approach is, instead of using measurable rectangles of finite measure, use

Proposition 7.21 in Folland’s real analysis to show—in the notation of that

proposition—that the span of functions of the form f ⊗ g, where f ∈ Cc(X),

g ∈ Cc(Y ) is dense in Cc(X × Y ), in the uniform norm. Then this implies

that Lp density on the compact set U × V , where U, V are defined in that

proposition. Then use the density of Cc(X ×Y ) in Lp(X ×Y ). This argument

would circumvent the need for working with measurable rectangles, by showing

directly that K0 is dense in K .

(ii) Another argument is the following. We know that the simple functions φ =∑n
j=1 aj1Ej

are dense in L2(S × S ′), where (m×m′)(Ej) <∞ for all j. More-

over, we know that the product σ-algebra S⊗S ′ is generated by the rectangles

in S × S ′. Consider the algebra A of finite unions of measurable rectangles.

Since m ×m′ is a premeasure on A , it follows from Proposition 1.14 in Fol-

land’s Real Analysis that the measure m×m′ on S ×S ′ is equal to its outer
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measure restricted to S ×S ′. Thus, for E ∈ S ×S ′,

m×m′(E) = inf
{ ∞∑

1

m×m′(Aj) : Aj ∈ A , E ⊂
∞⋃
1

Aj
}
.

Thus we can approximate the measure of E by a sum of measures of finite

unions of rectangles. And of course, any finite union of rectangles can be

expressed as a finite union of disjoint rectangles. Therefore, in our simple

function
∑n

j=1 aj1Ej
, each 1Ej

can be approximated in L2(S × S ′) by a finite

sum
∑N

j=1 1Fj
, where each Fj = Xj×Yj is a rectangle of finite measure; in other

words, 1Ej
is approximated by

∑N
j=1 p1Xj

,1Yj
, which is the density argument

we desired.

Section 3.4
Theorem 3.4.16 While this theorem is interesting, it might be helpful to have

a concrete example in mind to show that C(X), when X is connected, for exam-

ple, is not boundedly complete. Consider the family of continuous, piecewise-linear

functions illustrated below. They are all defined and bounded above on the closed,

connected interval X = [0, 1], but they have no least upper bound in C([0, 1]). In

fact, they converge pointwise to the function 1 − 1[.25,.75], which is discontinuous at

the points x = 1
4
, x = 3

4
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Figure 1: A family of function in C([0, 1]) which is bounded above, but has no least

upper bound.
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Recall that it may be shown that the real numbers are boundedly complete by

using the fact that in R every Cauchy sequence converges. This argument involves

constructing two Cauchy sequences that converge to the same limit, one being a

sequence of upper bounds, the other a sequence of real numbers which are not upper

bounds. This argument breaks down in the case of a general Banach space, where

the completeness property of every Cauchy sequence converging is insufficient, as the

above example illustrates.

It can, however, be shown that the self-adjoint operators in a von Neumann

algebra are boundedly complete, a corollary of Lemma 5.1.4 which will be mentioned

later, and which will be instrumental for the theory of von Neumann algebras.

Section 5.2
p. 315, Proof of 5.2.6 Regarding the existence of E(O): first note that ϕ is

order-preserving, by 4.1.8(i). Let ϕ(f1) ∈ ϕ(F (O)); if ϕ(f1) is not an upper bound

for F (O), then by definition of F (O) there must be some f2 ∈ F (O) such that

ϕ(f1) ≤ ϕ(f2); moreover, ϕ(f1) and ϕ(f2) are self-adjoint, because f1 and f2 are

real-valued. If ϕ(f2) is not an upper bound for ϕ(F (O)), then there exists an f3

with ϕ(f2) ≤ ϕ(f3), and so on. We obtain a monotone-increasing sequence {ϕ(fn)}
in ϕ(F (O)) such that 0 ≤ ϕ(fn) ≤ I for all n. By Lemma 5.1.4, ϕ(fn)

SOT→ H for

some self-adjoint H ∈ A , and moreover, H = l.u.b.{ϕ(fn)}. Then E(O) is defined

to be this H.

Page 315 “regular Borel measure”: we note that K& R use this term for what

is now commonly called a Radon measure.

From p. 316: the range projection of ϕ(f0) is a subprojection of E(O):

This follows from Lemma 5.1.5: since f0 = ‖f‖−1|f | we have 0 ≤ f0 ≤ 1, with f0

vanishing on X \O; hence f0 ∈ F (O), and 0 ≤ ϕ(f0) ≤ I. And clearly f
1/n
0 ∈ F (O)
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as well, where E(O) is the l.u.b. of ϕ
(
F (O)

)
in A . Hence

R
(
ϕ(f0)

)
= SOT- limϕ(f0)

1/n

= SOT- limϕ
(
(f0)

1/n
)

6 E(O).

From p. 316: ϕ(f0) and ϕ(f) have the same range projection. Kadison

and Ringrose claim that R
(
ϕ(f0)

)
= R

(
ϕ(f)

)
, where R denotes the range projection.

Since f0 = ‖f‖−1|f |, and ϕ(f0) = ‖f‖−1ϕ(|f |), this is equivalent to showing that

ϕ(|f |) = ϕ(f+) + ϕ(f−) and ϕ(f) = ϕ(f+)− ϕ(f−) have the same range projection,

where f+ and f− denote the positive and negative parts of f , respectively. This

is to say, we must show that range
(
ϕ(f+) + ϕ(f−)

)
= range

(
ϕ(f+) − ϕ(f−)

)
. I

could not see how to do this. I propose the following alternative argument: In order

to proceed with the proof we must simply show that R
(
ϕ(f)

)
6 E(O) for f as

described earlier in the proof (f ∈ C(X) real-valued and vanishing on X/O). Note

that 0 ≤ ‖f‖−1f+ ≤ f0 ≤ 1, whence 0 ≤ ϕ
(
‖f‖−1f+

)
≤ I, whence by Lemma 5.1.5,

R
(
ϕ(f+)

)
= R

(
ϕ(‖f‖−1f+)

)
= SOT- limϕ

(
‖f‖−1f+

)1/n
= SOT- limϕ

(
(‖f‖−1f+)1/n

)
6 E(O).

Note that this line of argument is also used to show R
(
ϕ(f0)

)
6 E(O). The same

argument shows that R
(
ϕ(f−)

)
6 E(O); hence R

(
ϕ(f+)

)
∨R

(
ϕ(f−)

)
6 E(O).

We clearly have, for any x ∈ H ,
(
ϕ(f+) − ϕ(f−)

)
(x) = ϕ(f+)(x) + ϕ(f−)(−x).

Thus we have

range
(
ϕ(f+)− ϕ(f−)

)
⊆ range

(
ϕ(f+)

)
+ range

(
ϕ(f−)

)
⊆ range

(
ϕ(f+)

)
∨ range

(
ϕ(f−)

)
= range

(
R(ϕ(f+))

)
∨ range

(
R(ϕ(f−))

)
= range

(
R(ϕ(f+)) ∨R(ϕ(f−))

)
.
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Thus we have

R
(
ϕ(f)

)
= R

(
ϕ(f+)− ϕ(f−)

)
6 R(ϕ(f+)) ∨R(ϕ(f−)) 6 E(O).

P. 318: “(at first, for each f in C(X) vanishing at ∞, but then for each f

continuous on sp(A) since each such agrees on sp(A) with some function vanishing

at ∞).”

For this, simply let O ⊃ sp(A), O open (and sp(A) is, of course, compact), and

use Urysohn’s lemma to get ϕ such that ϕ = 1 on sp(A) and ϕ = 0 on X −O. Then

fϕ ∈ C0, since C0 is an ideal (two-sided), and fϕ = f on sp(A).

From p. 318, in the proof of Theorem 5.2.8:

〈Ax, x〉 =

∫ ‖A‖
−‖A‖

λ d〈Eλx, x〉 for all x ∈H .

We want to show that AEλ ≤ λEλ and λ(I − Eλ) ≤ A(I − Eλ). Recall,

〈Eλ′x, x〉 − 〈Eλx, x〉 = µx(λ, λ
′],

and integration with respect to this measure µx is often denoted d〈Eλx, x〉. By the

linearity and continuity of the inner product in the first variable, we have

〈Ax, x〉 =

∫ ‖A‖
−‖A‖

λ d〈Eλx, x〉 =
〈( ∫ ‖A‖

−‖A‖
λ dEλ

)
x, x
〉

for all x ∈ H , whence A =
∫ ‖A‖
−‖A‖ λ dEλ, by Proposition 2.4.3. Arguing as in the

second paragraph of the proof of Theorem 5.2.3, we obtain the desired inequalities.

Remark on Theorem 5.2.8 (Bounded Borel function calculus): The op-

erator g(A) is really determined entirely by the values g takes on sp(A) (for this see

Theorem 5.2.8 and its proof, as well as the paragraph following Theorem 5.2.8). This

is because the measures µx,y, which come from the measures µx, are supported on

sp(A), as discussed on p. 318.
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We know that g(A) will depend only on the values of g on the spectrum, so

functions on C or X will determine the same operator g(A). Thus, we may extend

any bounded Borel function on C to a bounded Borel function on X by simply

assigning a value to the point at infinity, and enlarging the domain in this way will

not alter the operator g(A).

The idea of Theorem 5.2.8 is to extend the representation of the C∗-algebra C(X)

on H , whose image is an abelian C∗-algebra U(A), which was given by Theorem

4.4.5, to a representation of B into the double-commutant of U(A), where B denotes

the bounded Borel functions on C. We recall that here X = {C,∞} denotes the

Riemann sphere, or X = {R,∞}, according as A is normal or self-adjoint. This

first appearance in the argument of the extension is on p. 319, when K&R write in

parentheses “this is apparent from (3) when g ∈ C(X), and extends by a measure-

theoretic argument to the case where g is a bounded Borel function”. What is meant

here is that since the measures µx,y live on sp(A), one can show using a measure

theoretic argument that∣∣ ∫
C
g(p) dµx,y(p)

∣∣ ≤ ‖x‖‖y‖ sup
p∈sp(A)

|g(p)|.

In the remainder of the proof K&R continue to integrate over X, while speaking

of Borel functions on C, but the brief parenthetical remark above is the key to

understanding that in what follows one could just as well integrate over C. The

linear functional so obtained would be the same, because the domain of integration

differs only on a set of measure zero; hence we would obtain g(A) unambiguously. I

find it unclear that they are not consistent on this point. It would be better simply to

work consistently over X = {C,∞}, and then apply the argument near the bottom

of p. 321 to extend to Borel subsets of X containing sp(A).

The need for bounded Borel functions comes up at a several points in the argu-

ment. One instance is the one just mentioned: we need supp∈sp(A) |g(p)| to be finite.

There are also places where we need a Weierstrass approximation argument: for ex-

ample, when we prove the composite function rule, at the point where we wish to

bound the range of a function h. We want to apply the Stone-Weierstrass argument
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to a closed disk containing the range of h. The Weierstrass approximation we want

is by polynomials in the uniform norm metric, so we need a bounded subset of C.

The employment of Weierstrass approximation arguments is also why, at the top of

page 322, that the text states that the statement and proof of 5.2.9 can be modified

to apply to bounded Borel subsets of C: but this application is “concealed” in the

invocation of Theorem 4.4.5 applied to ϕ in the proof of 5.2.9. Essentially it is theo-

rem 4.4.5 that can be modified to C(U), if U is a bounded Borel set containing of C
containing sp(A). The need for Borel subsets containing sp(A) comes from a step in

the paragraph near the bottom of p. 321: to define g(A) when g is defined on some

bounded Borel set U containing sp(A), we first extended g to a function g̃ on C by

setting it to be zero off U ; the function so obtained will be a Borel function provided

that U is a Borel set.

We also note that at one point in the proof of the bounded Borel calculus there

is a step that could use elaboration, which is pertinent to the discussion above. In

the middle of page 320, where a Weierstrass approximation is used to approximate a

continuous function g uniformly by polynomials, we are restricting to a closed disk

D ⊂ C that contains both the range of h and sp
(
h(A)

)
—this approximation works

for any fixed g and h. For fixed g and h as above, by approximating g on D containing

range(h) and sp
(
h(A)

)
, we are able to conclude that (8) holds for g|D and h, ie

(g|D ◦ h)(A) = g|D
(
h(A)

)
.

Now since g|D ◦ h = g ◦ h on all of C (and in particular, on sp(A)), we have

(g ◦ h)(A) = (g|D ◦ h)(A)

= g|D
(
h(A)

)
= g|sp(h(A))

(
h(A)

)
= g
(
h(A)

)
.

Since g, h were arbitrary, we have (g ◦ h)(A) = g
(
h(A)

)
for all continuous g on C

and all bounded Borel h on C.
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The same type of argument applies to Remark 5.2.15: here we have D a closed

disk that contains the range of g and sp
(
g(A)

)
. By deferring to 5.2.9 (modified to

bounded subsets of C containing the spectrum), we obtain

(f |D ◦ g)(A) = f |D
(
g(A)

)
.

We note that we need to restrict to the disk here in order to apply 5.2.9 (which

also relies, in its proof, on a Weierstrass approximation). Now it follows as in the

previous paragraph that

(f ◦ g)(A) = f
(
g(A)

)
.

The paragraph following Theorem 5.2.8: In previous function calculi, we

had the function calculus proved for functions on C
(
sp(A)

)
, and wished to enlarge

to functions defined on bigger domains (cf. the paragraph preceding Theorem 4.1.8,

and the second paragraph on p. 273); this was easy, because we could simply define

f(A) to be f
∣∣
sp(A)

(A). Now the situation is that we have the function calculus of

Theorem 5.2.8 defined for functions on the larger domain C, but we can—without

ambiguity—shrink the domain to any Borel subset containing sp(A).

As noted in the text, I is the kernel of the homomorphism of B onto B
(
sp(A)

)
given by g 7→ g

∣∣
sp(A)

; and hence, by the 1st isomorphism theorem, B/I ∼= B
(
sp(A)

)
.

If q : B → B/I denotes the canonical quotient map, and ρ denotes the restriction

map, then the previous sentence could be expressed by saying ρ “factors through” q,

and this could be represented by saying there exists ρ̃ such that the following triangle

commutes:

B B
(
sp(A)

)
B/I

q

ρ

ρ̃

∼=

The authors describe a map that sends g ∈ B
(
sp(A)

)
to g̃ ∈ B, where

g̃(x) =

{
g(x) if x ∈ sp(A)

0 otherwise;
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let’s call this map η. Then ρ̃−1 is given by q ◦ η. As the authors point out, since the

kernel of the map sending g ∈ B to g(A) ∈ A contains I , this map (let’s call it φ)

factors through q as well:

B A

B
(
sp(A)

)
B/I

q

φ

ρ̃−1

∼=
φ̃

Thus, when the authors say “the mapping, g+ I → g(A), gives rise to a homomor-

phism of B
(
sp(A)

)
into A ,” they mean the composition φ̃ ◦ ρ̃−1, in our notation.

5.2.9, proof We wish to show that the collection F of all Borel subsets of sp(A)

whose characteristic functions g satisfy ϕ(g) = g(A), contains the open sets and is

closed under countable unions and complements, and hence coincides with the Borel

σ-algebra on sp(A).

To show that ϕ(χU) = χU(A) for each open set U ⊂ sp(A), we imitate the relevant

part of the proof of 5.2.8. We need continuous functions gn that converge pointwise to

g. So we express U as a countable union of open disks Oj with radius rj. We let fjn be

a continuous function on sp(A) with range in [0, 1], vanishing outside Oj, and taking

the value 1 on the closed disk with the same center as Oj and with radius
(n−1)rj

n
.

(For this we use Urysohn’s lemma.) Finally we take gn = f1n ∨ f2n ∨ · · · ∨ fnn. We

know that ϕ(gn) = gn(A) for each n, because the gn are continuous. By σ-normality

and 5.1.4, ϕ(gn) is strong operator convergent to its l.u.b. ϕ(g); and likewise, gn(A)

is strong operator convergent to its l.u.b. g(A); since the strong operator topology

is Hausdorff, g(A) = ϕ(g).

We now check that F is closed under countable unions. Let {Ej}∞j=1 be such that

Ej ∈ F for each j, and let E =
⋃∞
j=1Ej. Then the functions gN = χ⋃N

j=1 Ej
define

an increasing family of bounded Borel functions converging pointwise to g = χE.

Since ϕ is σ-normal, ϕ(gN) → ϕ(g) in the strong operator sense, and likewise, by
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σ-normality, gn(A)→ g(A) in the strong operator sense. But for each N ,

ϕ(gN) = ϕ
( N∑
j=1

Ej
)

=
N∑
j=1

ϕ(χEj
) =

N∑
j=1

χEj
(A) =

( N∑
j=1

χEj

)
= (χ⋃N

j=1 Ej
)(A) = gN(A).

It follows by uniqueness of limits that g(A) = ϕ(g), so that F is closed under

countable unions.

Now if E ∈ F , then

ϕ(χEc) = ϕ(1− χE) = ϕ(1)− ϕ(χE) = I − χE(A).

But I = 1(A) = χsp(A)(A), so the above is equal to

χsp(A)(A)− χE(A) = χsp(A)∩Ec(A) = χEc(A).

Thus F is closed under complements.

5.2.11, proof The second sentence follows from Lemma 5.2.10.

Remark 5.2.12 Note that Lemma 5.2.10 does require ACω, the axiom of count-

able choice. Does 5.2.5? Also, the final line of this remark “and exp iH = U” follows

from 4.1.8(ii).

Remark 5.2.13 Note that range(f) = sp(A) by the equation displayed in the

fourth line from the bottom on p. 271. That g 7→ g◦f is σ-normal follows immediately

from the function composition rule for bounded Borel functions.

Remark 0.1. We make a note here that pertains to σ-normality of an abelian von

Neumann algebra A , relevant to Remark 5.2.13 in the text. We know from 4.4.3 that

if A is an abelian von Neumann algebra, then A ∼= C(X) for a compact Hausdorff

space X, via a map ψ. We assert that the map ψ is σ-normal. If {fn} ∈ C(X),

fn → f pointwise (and hence uniformly), and fn ≤ fn+1 for all n, then in particular,

the fn are real-valued, and f is a least upper bound for {fn}. Thus ψ(fn) and ψ(f)

are self-adjoint, and {ψ(fn)} is an increasing sequence, as a consequence of 4.1.8(i).

We also know from 4.1.8(i) that ψ is continuous, and hence ψ(fn)→ ψ(f) in norm.
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This implies convergence in the strong operator topology as well, and therefore ψ(f)

is the least upper bound of {ψ(fn)} (argue as in the last part of the proof of Lemma

5.1.4).

5.2.14: there are some little steps here. It is shown in the argument that if

h ∈ B
(
sp(A)

)
is such that h vanishes on sp

(
φ(A)

)
, then φ

(
h(A)

)
= 0. In the

equation displayed in the middle of the page, we apply this to the function ı · g,

which vanishes on sp
(
φ(A)

)
since g does, to ascertain that φ

(
(ı · g)(A)

)
= 0. We

then have

φ
(
ı(A)

)
= φ

(
ı(A)

)
− φ
(
(ı · g)(A)

)
= φ

(
ı(A)− (ı · g)(A)

)
= φ

(
(ı − ı · g)(A)

)
= φ

(
[ı · (1− g)](A)

)
.
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