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Abstract

In this paper we show that the superlevel sets of the eigengap func-
tions in the space of Hermitian matrices are smoothly path-connected.
We do this by choosing two arbitrary matrices in the superlevel set of
the kth eigengap function, and constructing a smooth path between
them.
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While properties of eigenvalues of Hermitian matrices have long been
studied, the topology of the space of Hermitian matrices having distinct
eigenvalues does not appear to be well-known. In what follows we attempt
to shed a bit of light on this problem by showing that the space of Hermi-
tian matrices with a pair of successive eigenvalues separated by some fixed
distance is path-connected. We begin with a couple definitions.

Definition 0.1. For any Hermitian matrix H with eigenvalues λ1 ≤ λ2 ≤
· · · ≤ λn, we define its kth eigengap to be

∆k(H) = λk+1 − λk.

We refer to ∆k as the kth eigengap function.
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Definition 0.2. Let H be the space of Hermitian matrices with the relative
topology from GL(n). Let Hc

k = {H ∈ H : ∆k(H) ≥ c}, where c ∈ [0,∞).
That is, let Hc

k be the superlevel set of ∆k above c, considered as a subset of
H.

Theorem 0.3. Hc
k is smoothly path-connected for every c ≥ 0, and each

k = 1, 2, . . . , n.

Proof. We invoke the finite-dimensional Spectral Theorem, which says that
any normal matrix M is unitarily diagonalizable, that is, M = PDP ∗, where
D is the diagonal matrix of eigenvalues of M , and P is the unitary matrix
whose columns are the corresponding orthonormal eigenvectors. We can rear-
range the order in which the eigenvalues appear in D by choosing a different
change-of-basis matrix, whose columns are still the eigenvectors of M , but
arranged in a different order (the jth column corresponds to the eigenvalue
which is the jth diagonal element of D). Doing so does not change the fact
that the change-of-basis matrix is unitary, since an equivalent condition for
a matrix to be unitary is for its columns to be mutually orthonormal.

Let A and B be in Hc
k, with λ1 ≤ λ2 ≤ · · · ≤ λn the eigenvalues of A,

and µ1 ≤ µ2 ≤ · · · ≤ µn the eigenvalues of B. Let D1 = diag{λ1, λ2, . . . , λn};
D2 = diag{µ1, µ2, . . . , µn}. There exist P and Q so that A = PD1P

∗ and
B = QD2Q

∗.
Now let φ(t) = (1− t)D1 + tD2, for t ∈ [0, 1]. Explicitly,

φ(t) =


(1− t)λ1 + tµ1

(1− t)λ2 + tµ2

. . .

(1− t)λn + tµn

 .

We make a few observations about φ. That ∆k(φ) is greater than or equal
to c follows easily from the fact that ∆k(A) and ∆k(B) are:

∆k(φ(t)) = (1− t)λk+1 + tµk+1 − [(1− t)λk + tµk]

= (1− t)(λk+1 − λk) + t(µk+1 − µk)

≥ (1− t)c+ tc

= c.

Lastly, since the conjugate transpose of any diagonal matrix with real entries
is itself, φ(t) is Hermitian for all t.
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We now let Φ be a path in the unitary group U(n) from P to Q. Consider
Ψ = ΦφΦ∗. Since Φ and φ are smooth paths, and matrix multiplication and
inverse are smooth operations in GL(n), we see that Ψ is a smooth path
in Hc

k from A to B. Since similarity preserves eigenvalues, Ψ will have the
same eigenvalues as φ, and hence the same eigengaps. Finally, Ψ(t)∗ =
(Φ(t)φ(t)Φ(t)∗)∗ = Φ(t)∗∗φ(t)∗Φ(t)∗ = Φ(t)φ(t)Φ(t)∗ = Ψ(t), so that Ψ(t) is
Hermitian for all t.

Remark 0.4. The inequality “ ≥ ” may be replaced with “ ≤ ” or “ = ”
to show that the sublevel sets {H ∈ H : ∆k(H) ≤ c} and the level sets
{H ∈ H : ∆k(H) = c} are smoothly path-connected. Or we may replace
it with “ > ” or “ < ” to obtain that the sets {H ∈ H : ∆k(H) > c} and
{H ∈ H : ∆k(H) < c} are smoothly path-connected.

Remark 0.5. The analogous result for real symmetric matrices may not
hold, since the orthogonal group over R is not connected, but rather has
two connected components. However, if we let Hc

k+ be the intersection of
Hc

k with the set of Hermitian matrices with change-of-basis matrix in the
unitary diagonalization having determinant 1, then Hc

k+ is path-connected.
Similarly for the intersection of Hc

k with the set of Hermitian matrices with
change-of-basis matrix in the unitary diagonalization having determinant −1.
This means that in the case of real symmetric matrices, the superlevel (and
level and sublevel) sets have at most two path-components.
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