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Preface

This work started as part of an expository master’s thesis, and was later rejected
as the thesis changed direction. I learned most of this material from Conway [4]
and Folland [6], and the reader familiar with Conway’s book will no doubt see his
influence. I struggled with the material presented there, however, and it wasn’t until
I wrote out my own version of the material that I felt I really understood it and
knew it. So these notes are essentially for myself: I wrote them to get a better grasp
on the material, and for the exercise of writing math. I regard them as a work in
progress. I have found several mistakes over the years, some quite embarrassing, and
I expect many still exist. I will be grateful to learn of any mistakes, so that I can fix
them.

The first section may seem eccentric; it is largely and essentially borrowed from a
math.stackexchange.com thread: [1] and Tom Apostol’s book [2]. I use results from
this section only twice in the remainder of these notes. The fact that the iterated
limsup is bounded by the double limsup is used in the proof that an infinite direct
sum of Hilbert spaces is complete (this is the proof given in Dunford & Schwartz); it
isn’t necessary to use this fact here, but I’ve seen it used elsewhere in the literature
(for example, the proof given in Pedersen’s Analysis Now that B(X ,Y )—the space
of bounded linear transformations from X to Y —is complete whenever Y is), so I
decided it was worth recording.

Since I have chosen to use i as an index throughout, I have used the symbol
ı—the “\imath” symbol—to denote the imaginary unit in the complex numbers.
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1 Preliminaries: Limits, Sup, Limsup

1.1 Double Limits; Iterated Limits

The material in this subsection is borrowed largely and essentially from a discussion
found on math.stackexchange.com: [1], as well as on material from Tom Apostol’s
beautiful book Mathematical Analysis.

Definition 1.1. A double sequence is a function f whose domain is N× N.

Definition 1.2. Let (X, d) be a metric space. We say that a double sequence f(m,n)
converges to a ∈ X if, for every ε > 0, there exists N ∈ N such that d(f(m,n), a) < ε
whenever m and n are both greater than or equal to N . When this is the case we
write limm,n→∞ f(m,n) = a, and we call a the double limit of the sequence f .

If limn→∞ f(m,n) exists for each m, we can consider the iterated limit

lim
m→∞

lim
n→∞

f(m,n) ≡ lim
m→∞

(
lim
n→∞

f(m,n)
)
;

similarly, if limn→∞ f(m,n) exists for each n we can consider the iterated limit

lim
n→∞

lim
m→∞

f(m,n) ≡ lim
n→∞

(
lim

m→∞
f(m,n)

)
.

In general it is not the case that the iterated limits exist when the double limit exists,
and vice versa. Indeed, it may be the case that the double limit exists but only one,
or neither of the iterated limits exist; or it may be the case that one or both of
the iterated limits exist but the double limit fails to exist—see Apostol’s book for
examples.

Theorem 1.3. If the double sequence f converges to a ∈ X and, if, for each m, the
limit limn→∞ f(m,n) exists, then the iterated limit

lim
m→∞

lim
n→∞

f(m,n)

exists and is equal to a.

Proof. Let F (m) = limn→∞ f(m,n). Let ε > 0. Since the double limit of f is equal
to a, there exists an N ∈ N such that

d
(
f(m,n), a

)
<

ε

2
for all m,n ≥ N.
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Let m ≥ N , and choose n ≥ N , (which will depend on m as well as on ε), such that

d
(
f(m,n), F (m)

)
<

ε

2
;

then by the triangle inequality,

d
(
F (m), a

)
< ε.

We’ve shown that for each ε > 0, there exists an N ∈ N such that d(F (m), a) < ε
whenever m ≥ N , which is what was to be proven.

We note that switching the roles of m and n yields the analogous result for the
other iterated limit. Thus we have the following corollary:

Corollary 1.4. When the double limit of f exists, and when it makes sense to
talk about the iterated limits—i.e., when limn→∞ f(m,n) exists for each m and
limm→∞ f(m,n) exists for each n—the iterated limits both exist and are both equal
to the double limit of f .

1.2 Infinite Double Limits

When X is taken to be the real numbers, we can speak of a sequence f : N → R
approaching infinity.

Definition 1.5. If for every M ∈ R there exists an N ∈ N such that f(n) ≥ M
whenever n ≥ N , we say that f tends to infinity, and write limn→∞ f(n) = ∞.

Definition 1.6. Given a double sequence f , we say that f tends to infinity in
the double limit if, for each M ∈ R, there exists an N such that f(m,n) ≥ M
whenever m and n are both greater than or equal to N ; in this case we write
limm,n→∞ f(m,n) = ∞. Just as for finite limits, we can consider iterated limits
and explore the relationship between the double limit and the iterated limits.

Theorem 1.7. Suppose that the double sequence f : N × N → R tends to infinity
in the double limit, and assume that for each m, f(m,n) converges to a number
F (m) ∈ R. Then

lim
m→∞

lim
n→∞

f(m,n) ≡ lim
m→∞

F (m) = ∞.

Proof. Let M > 0. There exists N ∈ N such that f(m,n) ≥ M whenever m,n ≥ N .
Let m ≥ N ; since f(m,n) ≥ M for each n ≥ N , it follows that F (m) ≥ M . We’ve
shown that for each M > 0, there exists N such that F (m) ≥ M for all m ≥ N ; that
is, F tends to infinity, as was to be shown.
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This is an analogue of Theorem 1.3. In fact, it is a corollary of Theorem 1.3: for
consider X = R, the extended real numbers, endowed with the metric

ρ(x, y) = | arctan(x)− arctan(y)|,

where we define arctan(∞) = π
2
and arctan(−∞) = −π

2
. The reader can easily verify

that limn→∞ f(n) = ∞ in this metric space if, and only if, for each M > 0 there
exists an N such that f(n) ≥ M for all n ≥ N ; thus the notion of convergence
to infinity that we discussed for real-valued functions agrees with the metric space
notion of convergence to the point ∞ ∈ R.

Just as for finite limits, the double limit can fail to exist even though one of the
iterated limits exist—the standard example here is f(m,n) = mn

m2+n2 , for which both
iterated limits are 0, but the double limit does not exist.

The double limit can fail to tend to infinity even though both of the iterated
limits tend to infinity.

Example 1.8. Let f be the double sequence given by

f(m,n) =
m(n−m)

m2 + n
+

n(m− n)

m+ n2
.

It is easy to verify that for each fixed m, limn→∞ f(m,n) = m− 1, whence

lim
m→∞

lim
n→∞

f(m,n) = ∞.

Similarly,
lim
n→∞

lim
m→∞

f(m,n) = ∞.

But f(m,m) = 0 for all m ∈ N, from which it follows that the double limit does not
tend to infinity.

The reader can easily verify that if even one of the iterated limits of a double
sequence f exists, then f cannot tend to infinity in the double limit.

1.3 Double and Iterated Limits Superior

We’ve discussed double and iterated limits for double sequences; what about double
and iterated limits superior? The situation is different for lim sup because it always
exists in the extended reals, and is finite for bounded sequences.
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Definition 1.9. Given a sequence f : N → R, we define its limit superior to be

inf
l∈N

sup
n≥l

f(n) = lim
l→∞

sup
n≥l

f(n),

which we denote by
lim sup f(n) or lim sup

n
f(n).

It is easy to see that lim sup always exists in R, because by definition it is the
limit of a monotone sequence.

Definition 1.10. We say that the double limit superior of the double sequence
f : N× N → R is a ∈ R if

lim
N→∞

(
sup

m,n≥N
f(m,n)

)
= a.

Theorem 1.11. Suppose that f is a bounded double sequence taking its values in
the extended real numbers. The double limit superior

lim sup
m,n→∞

f(m,n) = a

exists and the iterated limits superior

lim sup
m

(
lim sup

n
f(m,n)

)
and lim sup

n

(
lim sup

m
f(m,n)

)
are both bounded above by a.

Proof. Notice that supm,n≥N f(m,n) is a decreasing sequence in N , so its limit exists

in R; hence the existence of the double limit superior. If lim supm,n f(m,n) = ∞,
then the second statement in the theorem holds automatically; so suppose that
lim supm,n f(m,n) = a ∈ R, and let ε > 0. There exists N(ε) ∈ N such that

sup
m,n≥N(ε)

f(m,n) < a+ ε.

It follows that for fixed n ≥ N(ε),

lim sup
m

f(m,n) < a+ ε.

From this it follows that

sup
n≥N(ε)

(
lim sup

m
f(m,n)

)
≤ a+ ε,
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whence
lim sup

n

(
lim sup

m
f(m,n)

)
≤ a+ ε.

Since ε was arbitrary, we have

lim sup
n

(
lim sup

m
f(m,n)

)
≤ a.

A symmetric argument shows that

lim sup
m

(
lim sup

n
f(m,n)

)
≤ a.

For the case when lim supm,n f(m,n) = −∞, the argument is essentially the same:
for each M ∈ R, there exists N(M) such that

sup
m,n≥N(M)

f(m,n) < M ;

it follows that

lim sup
m

f(m,n) < M for each fixed n ≥ N(M),

whence
sup

n≥N(M)

(
lim sup

m
f(m,n)

)
≤ M,

whence
lim sup

n

(
lim sup

m
f(m,n)

)
≤ M.

Since M was arbitrary, we conclude that

lim sup
n

(
lim sup

m
f(m,n)

)
= −∞,

and since the argument is symmetric in m and n, we have that the other iterated
limit equals −∞ too. This concludes the proof.

Example 1.12. It may be that the double limit superior is strictly greater than the
iterated limits superior; the sequence

f(m,n) =

{
m if m = n
0 if m ̸= n.

illustrates this; its double limit superior is ∞, but its iterated limits superior are 0.
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Example 1.13. The iterated limits superior need not be equal. Consider, for ex-
ample, the sequence

f(m,n) =

{
m if n = km for some k ∈ N
0 otherwise.

The double limit superior
lim sup

m,n
f(m,n)

is ∞, since for every positive integer N , supm,n≥N f(m,n) = ∞. The iterated limit
superior

lim sup
m

(
lim sup

n
f(m,n)

)
is also ∞, because for each m,

lim sup
n

f(m,n) = m.

Notice, however, that

lim sup
n

(
lim sup

m
f(m,n)

)
= 0

because, for each n ∈ N, we have f(m,n) = 0 for all m > n; and hence, for each
fixed n,

lim sup
m

f(m,n) = 0.

The reader can verify that similar results can be stated and proven for the limits
inferior.

1.4 Swapping Supremums

We’ve previously considered double sequences and determined a sufficient condition
for when one can switch the order in which the iterated limit is taken for such
sequences. One may in certain situations wish to swap the order in an iterated
supremum of a double sequence; that is, one may wish to write

sup
m

(
sup
n

f(m,n)
)
= sup

n

(
sup
m

f(m,n)
)
.

Of course, one can always do this. We prove a more general result, as it is useful to
have the more general result, and the order structure ≤ on N is not needed for the
proof.

8



Theorem 1.14. Let X and Y be sets, and let f : X × Y → R be a function. Then

sup
x∈X

(
sup
y∈Y

f(x, y)
)
= sup

y∈Y

(
sup
x∈X

f(x, y)
)
= sup

(x,y)∈X×Y

f(x, y).

Proof. Suppose that

sup
x∈X

(
sup
y∈Y

f(x, y)
)
< sup

(x,y)∈X×Y

f(x, y).

Then since supremum, by definition, means least upper bound,

sup
x∈X

(
sup
y∈Y

f(x, y)
)

is not an upper bound for

{f(x, y) : x ∈ X, y ∈ Y };

so there exists some (x0, y0) such that

sup
x∈X

(
sup
y∈Y

f(x, y)
)
< f(x0, y0).

But
f(x0, y0) ≤ sup

y∈Y
f(x0, y) ≤ sup

x∈X

(
sup
y∈Y

f(x, y)
)
,

a contradiction. Now suppose that

sup
x∈X

(
sup
y∈Y

f(x, y)
)
> sup

(x,y)∈X×Y

f(x, y).

Then sup(x,y)∈X×Y f(x, y) is not an upper bound for{
sup
y∈Y

f(x, y) : x ∈ X
}
,

so there exists some x0 ∈ X such that

sup
y∈Y

f(x0, y) > sup
(x,y)∈X×Y

f(x, y).

Now this equations implies that sup(x,y)∈X×Y f(x, y) is not an upper bound for

{f(x0, y) : y ∈ Y },
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and hence there exists y0 ∈ Y such that

f(x0, y0) > sup
(x,y)∈X×Y

f(x, y),

which is a contradiction. Assuming either quantity is strictly larger than the other
brings about a contradiction, so we must have

sup
x∈X

(
sup
y∈Y

f(x, y)
)
= sup

(x,y)∈X×Y

f(x, y).

In precisely the same way one shows that

sup
y∈Y

(
sup
x∈X

f(x, y)
)
= sup

(x,y)∈X×Y

f(x, y).

This concludes the proof.

The reader will see that an analogous result can be stated and proven for infi-
mums. In general one cannot, however, transpose the order in which an infimum and
a supremum are taken.

1.5 Swapping Supremums and Limits

When working with double sequences, one may wish to alternate the order in which
one is taking a limit and a supremum with respect to each of the two variables.

Theorem 1.15. Let f be a double sequence, and let A ⊂ N. Suppose that, for each
fixed m ∈ A,

lim
n→∞

f(m,n)

exists or tends to infinity. Suppose further that

lim
n→∞

(
sup
m∈A

f(m,n)
)

exists or tends to infinity. Then

sup
m∈A

(
lim
n→∞

f(m,n)
)
≤ lim

n→∞

(
sup
m∈A

f(m,n)
)
. (1)
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Proof. Clearly, for each fixed (m,n) ∈ A× N,

f(m,n) ≤ sup
m∈A

f(m,n),

and so
lim
n→∞

f(m,n) ≤ lim
n→∞

(
sup
m∈A

f(m,n)
)
. (2)

Since m ∈ A in the left hand side of equation (2) is arbitrary, we have

sup
m∈A

(
lim
n→∞

f(m,n)
)
≤ lim

n→∞

(
sup
m∈A

f(m,n)
)
,

establishing (1).

Corollary 1.16. Let f be a double sequence, A ⊂ N. Suppose that, for each fixed
m ∈ A, f is increasing in n. Then the limits in (1) exist or tend to infinity, and we
have equality in (1).

Proof. If, for each fixed m ∈ A, f is increasing in n, then for each (m,n) ∈ A × N
we have

f(m,n) ≤ lim
n→∞

f(m,n),

whence
sup
m∈A

f(m,n) ≤ sup
m∈A

(
lim
n→∞

f(m,n)
)
. (3)

Since the left hand side of (3) is increasing in n, its limit as n approaches infinity
exists or tends to infinity, and

lim
n→∞

(
sup
m∈A

f(m,n)
)
≤ sup

m∈A

(
lim
n→∞

f(m,n)
)
.

We remark that similar results can be stated and proven for swapping limits and
infimums.
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2 Banach Spaces

2.1 Norms

Definition 2.1. Given a vector space X over a field F, where F = R or C, a norm
on X is a function ∥ · ∥ : X → [0,∞) which satisfies

(i) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ X (the triangle inequality).

(ii) ∥αx∥ = |α|∥x∥ for all α ∈ F and x ∈ X (scaling).

(iii) ∥x∥ = 0 implies x = 0 (non-degeneracy).

If we relax the third condition then we have a semi-norm.

Usually we denote semi-norms by p, or {pα}α∈A for an indexed family of semi-
norms, and reserve the ∥ · ∥ notation for norms. In a normed space X the norm
gives rise to a metric, called the norm metric, defined by d(x, y) = ∥x − y∥ for all
x, y ∈ X . Therefore metric space notions apply in a normed space. In particular, a
normed space X has the metric topology, i.e., the open sets are the sets which are
open with respect to the norm metric.

Definition 2.2. A normed space which is complete with respect to this metric is
called a Banach space. We will usually assume our vector spaces to be over C, noting
where discrepancies arise.

Theorem 2.3. The function x 7→ ∥x∥ is continuous from X to [0,∞).

Proof. If xn → x in X , then∣∣∥xn∥ − ∥x∥
∣∣ ≤ ∥xn − x∥ → 0,

i.e., ∥xn∥ → ∥x∥.

If X and Y are two normed spaces, then we can endow X ×Y with the product
norm, defined by ∥(x, y)∥ = max{∥x∥, ∥y∥} for all pairs (x, y) ∈ X × Y . We note
that the equality

∥(xn, yn)− (x, y)∥ = ∥(xn − x, yn − y)∥ = max{∥xn − x∥, ∥yn − y∥}

implies that (xn, yn) → (x, y) if and only if xn → x and yn → y.
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Theorem 2.4. Addition + : X ×X → X and scalar multiplication · : C×X → X
are continuous.

Proof. If (xn, yn) → (x, y) in X × X then

∥(xn + yn)− (x+ y)∥ ≤ ∥xn − x∥+ ∥yn − y∥ → 0,

which shows that addition is continuous. Now suppose that (αn, xn) → (α, x) in
C× X . Then xn → x, and hence xn is bounded, say by M . Now

∥αnxn − αx∥ ≤ ∥αnxn − αxn∥+ ∥αxn − αx∥
= |αn − α|∥xn∥+ |α|∥xn − x∥
≤ |αn − α|M + |α|∥xn − x∥
→ 0.

Thus, scalar multiplication is continuous.

2.2 Linear Transformations

We call a linear map between vector spaces a linear operator or a linear transfor-
mation, or simply a linear map. If X and Y are normed vector spaces, the set
of continuous linear maps between them is denoted B(X ,Y ). With addition and
scalar multiplication defined pointwise, B(X ,Y ) is a vector space. We say that a
linear map T : X → Y is bounded if there exists a positive constant c > 0 such that
∥Tx∥ ≤ c∥x∥ for all x ∈ X .

Definition 2.5. If X and Y are normed vector spaces and T is a linear map between
them, we define

∥T∥ ≡ inf{c > 0 : ∥Tx∥ ≤ c∥x∥ for x ∈ X }.

If there is no c such that ∥Tx∥ < c∥x∥ for all x ∈ X , then ∥T∥ = inf ∅ = ∞. Thus
T is bounded if and only if ∥T∥ < ∞. As the notation suggests, and as we verify
presently, T 7→ ∥T∥ defines a norm on B(X ,Y ), called the operator norm. The
operator norm is sometimes denoted by ∥ · ∥op.

Theorem 2.6. T 7→ ∥T∥ defines a norm on B(X ,Y ).

Proof. Let S, T ∈ B(X ,Y ). For each x ∈ X we have

∥(S + T )(x)∥ ≤ ∥Sx∥+ ∥Tx∥ ≤ (∥S∥+ ∥T∥)∥x∥,
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and hence ∥S + T∥ ≤ ∥S∥+ ∥T∥.
Now note that for α ̸= 0 and c > 0, we have ∥αTx∥ ≤ c∥x∥ if and only if

∥Tx∥ ≤ c
|α|∥x∥. Thus

∥αT∥ = inf{c > 0 : ∥αTx∥ ≤ c∥x∥}
= inf

{
c > 0 : ∥Tx∥ ≤ c

|α|∥x∥
}

= |α|∥T∥.

Lastly, if ∥T∥ = 0, then it is clear from the definition that ∥Tx∥ ≤ c∥x∥ for all c > 0.
If x = 0 then it is clear that Tx = 0. If x ̸= 0 then

∥Tx∥ ≤ (c∥x∥−1)∥x∥ = c

for all c > 0; this implies that ∥Tx∥ = 0, which in turn implies that Tx = 0. Thus
we see that ∥T∥ = 0 implies T = 0.

Proposition 2.7. If X and Y are normed vector spaces and T is a linear map
between them, then the following are equivalent:

(i) T ∈ B(X ,Y ).

(ii) T is continuous at 0.

(iii) T is continuous at some point.

(iv) T is bounded.

Proof. If (i) holds, i.e., if T is continuous, then (ii) and (iii) clearly hold. Suppose
that T is continuous at some point x0 ∈ X . Then if x ∈ X and xn → x, we have
xn−x+x0 → x0, and hence T (xn−x+x0) → T (x0). Then since T is linear we have

T (xn)− T (x) + T (x0) → T (x0),

which means T (xn) → T (x). We have thus shown that if T is continuous at some
point then it is continuous at every point, i.e., (iii) implies (i).

Suppose now that T is continuous at 0; let B(x, r) be our notation for the disk
of radius r centered at x. Then there exists a δ > 0 such that

T (BX (0, δ)) ⊂ BY (T (0), 1) = BY (0, 1),

whence
T (BX (0, δ)) ⊂ T (BX (0, δ)) ⊂ BY (0, 1).
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In other words, ∥Tx∥ ≤ 1 whenever ∥x∥ ≤ δ. Now for any x ̸= 0 we have∥∥δ∥x∥−1x
∥∥ = δ,

and so ∥∥T (δ∥x∥−1x)
∥∥ ≤ 1.

Therefore ∥T (x)∥ ≤ δ−1∥x∥ for all x ∈ X , and thus (ii) implies (iv).
Now suppose that T is bounded, i.e. there exists C > 0 such that ∥Tx∥ ≤ C∥x∥

for all x ∈ X . Then if ∥x1 − x2∥ < C−1ε we have

∥Tx1 − Tx2∥ = ∥T (x1 − x2)∥ ≤ C∥x1 − x2∥ < ε,

so that T is continuous (in fact, it is uniformly continuous), and thus (iv) implies
(i).

Proposition 2.8. For T : X → Y a linear map between normed vector spaces, we
have

∥T∥ = sup{∥Tx∥ : ∥x∥ ≤ 1}
= sup{∥Tx∥ : ∥x∥ = 1}

= sup

{
∥Tx∥
∥x∥

: ∥x∥ ≠ 0

}
.

Proof. Let α = sup{∥Tx∥ : ∥x∥ ≤ 1}. We will first show that ∥T∥ = α. For any
ε > 0 and any x ∈ X we have, by definition of α,∥∥T ((∥x∥+ ε)−1x)

∥∥ ≤ α,

whence ∥Tx∥ ≤ α(∥x∥ + ε). Letting ε → 0 we get ∥Tx∥ ≤ α∥x∥ for all x ∈ X .
Thus, ∥T∥ ≤ α. On the other hand, if ∥Tx∥ ≤ c∥x∥ for all x, then for ∥x∥ ≤ 1 we
have ∥Tx∥ ≤ c∥x∥ ≤ c, and hence α ≤ c. This means that α is a lower bound for

B = {c > 0 : ∥Tx∥ ≤ c∥x∥ for x ∈ X }.

But ∥T∥ is the infimum of B, and hence α ≤ ∥T∥. Therefore, α = ∥T∥.
Now to show the other equalities. Note that if 0 < ∥x∥ ≤ 1 then ∥x∥∥Tx∥ ≤

∥Tx∥, and therefore
∥Tx∥ ≤ ∥T (x/∥x∥)∥.

Since ∥x/∥x∥∥ = 1 for x ̸= 0, it follows that

sup{∥Tx∥ : ∥x∥ ≤ 1} = sup{∥Tx∥ : ∥x∥ = 1}.
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Lastly, since

{x ∈ X : ∥x∥ = 1} =

{
x

∥x∥
: x ∈ X , x ̸= 0

}
,

we have

sup{∥Tx∥ : ∥x∥ = 1} = sup
{
∥T (∥x∥−1x)∥ : x ̸= 0

}
= sup

{
∥Tx∥
∥x∥

: x ̸= 0

}
,

as desired.

We note that a useful fact comes out of the proof, namely that for any T ∈
B(X ,Y ), we have ∥Tx∥ ≤ ∥T∥∥x∥ for all x ∈ X .

Proposition 2.9. If Y is complete, so is B(X ,Y ).

Proof. Let {Tn} be a Cauchy sequence in B(X ,Y ). Given x ∈ X ,

∥Tnx− Tmx∥ ≤ ∥Tn − Tm∥∥x∥,

and hence {Tnx} is Cauchy in Y . Since Y is complete, {Tnx} converges, and we
can define a map T : X → Y by Tx = limn→∞ Tnx. It follows from the linearity of
each Tn and the continuity of addition and scalar multiplication that T is linear:

T (x+ y) = lim
n

Tn(x+ y) = lim
n
(Tnx+ Tny) = Tx+ Ty,

and
T (αx) = lim

n
Tn(αx) = α lim

n
Tnx = αTx.

Since {Tn} is Cauchy, it is bounded, by M say. Then for each x ∈ X , we have

∥Tx∥ = lim
n

∥Tnx∥ ≤ ∥Tn∥∥x∥ ≤ M∥x∥.

Thus T is bounded. Let ε > 0. There exists and N such that ∥Tm − Tn∥ < ε
whenever m,n ≥ N . So for any x ∈ X and n ≥ N fixed,

∥Tnx− Tx∥ = lim
m

∥Tnx− Tmx∥ ≤ lim
m

∥Tn − Tm∥∥x∥ ≤ ε∥x∥.

Therefore,
∥Tn − T∥ ≤ ε

for all n ≥ N , proving that Tn → T .

16



3 Hilbert Spaces

3.1 Inner Products

Definition 3.1. Let X be a complex vector space. A semi-inner product on X is
a map u : X × X → C such that:

(i) u(αx+ βy, z) = αu(x, z) + βu(y, z) for all x, y, z ∈ X and α, β ∈ C.

(ii) u(y, x) = u(x, y) for all x, y ∈ X .

(iii) u(x, x) ∈ [0,∞) for all x ∈ X .

Condition (i) may equivalently be expressed by the two conditions

(i′) u(x+ y, z) = u(x, z) + u(y, z) or all x, y, z ∈ X , and

(i′′) u(αx, y) = αu(x, y) for all x, y ∈ X , α ∈ C.

Notice that (i) and (ii) imply u(x, αy + βz) = ᾱu(x, y) + β̄u(x, z). We note in
passing that if u is a semi-inner product, then p defined by p(x) =

√
u(x, x) for

all x ∈ X is a semi-norm, but proving this requires a generalized version of the
Cauchy-Schwarz inequality for semi-inner products, which we shall omit.

Definition 3.2. A semi-inner product for which x = 0 whenever u(x, x) = 0 is
called an inner product, and for these we write ⟨x, y⟩ instead of u(x, y). A vector
space equipped with an inner product is called a pre-Hilbert space, or more commonly,
an inner product space.

Definition 3.3. If X is an inner product space, we define

∥x∥ =
√

⟨x, x⟩; x ∈ X .

As the notation suggests, this defines a norm on X , as we now proceed to show.
If x ∈ X and α ∈ C then

∥αx∥2 = ⟨αx, αx⟩ = |α|2∥x∥2,

so that ∥αx∥ = |α|∥x∥. Moreover, if ∥x∥ = 0 then ∥x∥2 = ⟨x, x⟩ = 0, which by
definition of the inner product implies x = 0. To see that ∥x∥ =

√
⟨x, x⟩ satisfies

the triangle inequality we need the following important result:
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Proposition 3.4 (The Cauchy-Schwarz Inequality). Given an inner product ⟨·, ·⟩,
we have |⟨x, y⟩| ≤ ∥x∥∥y∥ for all x, y ∈ X , with equality if and only if x and y are
linearly dependent.

Proof. The result is clear for ⟨x, y⟩ = 0, so assume ⟨x, y⟩ ≠ 0. Let ξ = sgn⟨x, y⟩.
Then for t ∈ R we have

0 ≤ ⟨x− tξy, x− tξy⟩ = ∥x∥2 − tξ̄⟨x, y⟩ − tξ⟨y, x⟩+ t2|ξ|2∥y∥2

= ∥x∥2 − 2t|⟨x, y⟩|+ t2∥y∥2

≡ q(t).

Since q(t) ≥ 0 for all t, the discriminant of q must be less than or equal to 0, i.e.:

4|⟨x, y⟩|2 − 4∥y∥2∥x∥2 ≤ 0,

i.e.:
|⟨x, y⟩|2 ≤ ∥x∥2∥y∥2,

as desired. Moreover, q will have a root only if this holds with equality. In that case,
evaluating q at its root t0 gives

0 = q(t0) = ∥x− t0ξy∥2,

which implies x = t0ξy, i.e., that x and y are linearly dependent. Suppose, conversely
that x and y are linearly dependent, i.e., that y = αx for some α ∈ C. Then

|⟨x, y⟩| = |⟨x, αx⟩| = |α|∥x∥2 = ∥x∥|α|∥x∥ = ∥x∥∥αx∥ = ∥x∥∥y∥.

Now to see that ∥x∥ ≡
√

⟨x, x⟩ satisfies the triangle inequality, note that

∥x+ y∥2 = ⟨x+ y, x+ y⟩ = ∥x∥2 + ⟨x, y⟩+ ⟨y, x⟩+ ∥y∥2 = ∥x∥2 + 2Re⟨x, y⟩+ ∥y∥2,

so by the Cauchy-Schwarz inequality,

∥x+ y∥2 = ∥x∥2 + 2Re⟨x, y⟩+ ∥y∥2

≤ ∥x∥2 + 2|⟨x, y⟩|+ ∥y∥2

≤ ∥x∥2 + 2∥x∥∥y∥+ ∥y∥2

= (∥x∥+ ∥y∥)2,

as desired. We can also prove that the inner product is continuous:
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Proposition 3.5 (Continuity of the Inner Product). If xn → x and yn → y then
⟨xn, yn⟩ → ⟨x, y⟩.
Proof.

|⟨xn, yn⟩ − ⟨x, y⟩| = |⟨xn − x, yn⟩+ ⟨x, yn − y⟩|
≤ |⟨xn − x, yn⟩|+ |⟨x, yn − y⟩|
≤ ∥xn − x∥∥yn∥+ ∥x∥∥yn − y∥.

The last quantity tends to zero because yn → y implies that ∥yn∥ is bounded.

The following identities, known as the polarization identities, are verified by
straightforward computation. In a real inner product space X we have the iden-
tity

⟨x, y⟩ = 1

4

(
∥x+ y∥2 − ∥x− y∥2

)
for all x, y ∈ X . In a complex inner product space we have

⟨x, y⟩ = 1

4

(
∥x+ y∥2 − ∥x− y∥2 + ı∥x+ ıy∥2 − ı∥x− ıy∥2

)
(4)

for all x, y ∈ X .
The Parallelogram Law (stated below) characterizes inner product spaces, in the

sense that any normed vector space (X , ∥ · ∥) which satisfies it has an inner product
– namely, as given by the relevant polarization identity. This characterization is
known as the Fréchet – von Neumann – Jordan Theorem; we shall not prove it here,
but refer the reader to [8], pp. 160–162 for the case of real normed vector spaces.

Proposition 3.6 (The Parallelogram Law). For all x, y ∈ X ,

∥x+ y∥2 + ∥x− y∥2 = 2(∥x∥2 + ∥y∥2). (5)

The name of this equality comes from the following interpretation: let x and y
represent the two different sides of a parallelogram; then the equality says that the
sum of the squares of the diagonals of the parallelogram is equal to the sum of the
squares of the four sides. To obtain (5) in a complex inner product space, simply
add the two equations

∥x± y∥2 = ∥x∥2 ± 2Re⟨x, y⟩+ ∥y∥2.
Definition 3.7. An inner product space that is complete with respect to the norm
∥x∥ =

√
⟨x, x⟩ is called a Hilbert space. In what follows we use H to denote a

Hilbert space.

We give a couple examples of Hilbert spaces, skipping over the details in verifying
that they are indeed Hilbert spaces.
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3.2 Examples

(a) L2(µ). Let (X,M , µ) be a measure space, and consider the measurable func-
tions f : X → C such that

∫
|f |2 dµ < ∞. The relation f ∼ g if f = g

a.e. is an equivalence relation on these functions; we use L2(µ) or simply
L2 to denote the space of equivalence classes. We write f ∈ L2 to indicate
that f is a representative function in an equivalence class. It follows from the
inequality ab ≤ 1

2
(a2 + b2), valid for all a, b ≥ 0, that if f, g ∈ L2(µ) then

|fḡ| ≤ 1
2
(|f |2 + |g|2), and hence

∫
|fḡ| dµ < ∞. It is easy to see that

⟨f, g⟩ ≡
∫

fḡ dµ

defines an inner product on L2(µ). In fact, L2(µ) is a Hilbert space for any
measure µ. This is proven in any standard measure and integration theory
text.

(b) l2(I). If we consider the special case of the above example that we get by
taking µ to be the counting measure on (I,P(I)), where I is any nonempty
set and P(I) is its power set, then we get the Hilbert space known as little l2

of I. This is the space of functions f : I → C such that the sum
∑

i∈I |f(i)|2
is finite (we will discuss the meaning of this sum for I possibly uncountable
presently). The inner product in this space is given by

⟨f, g⟩ ≡
∑
i∈I

f(i)g(i).

To shed a bit of light on this example, we need a definition and a lemma:

Definition 3.8. If I is an arbitrary set, and f : I → [0,∞], we define
∑

i∈I f(i)
to be the supremum of its partial sums:∑

i∈I

f(i) = sup
{∑

i∈F

f(i) : F ⊂ I, F finite
}
.

We say that the family {f(i) : i ∈ I} is summable, or that the sum
∑

i∈I f(i)
converges to a finite number, if

∑
i∈I f(i) < ∞.

Lemma 3.9. If f is a nonnegative function defined on a set E ⊂ I and µ is
the counting measure, then

∫
E
f dµ =

∑
i∈E f(i).
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Proof. First note that if ϕ is a nonnegative simple function on X with standard
representation

ϕ =
n∑

j=1

βjχϕ−1(βj),

where {β1, . . . , βn} are the distinct nonzero elements in the range of ϕ, then∫
E

ϕ dµ =
n∑
1

βjµ(ϕ
−1(βj) ∩ E)

=
n∑
1

βj

∑
i∈ϕ−1(βj)∩E

1

=
n∑
1

∑
i∈ϕ−1(βj)∩E

βj

=
n∑
1

∑
i∈ϕ−1(βj)∩E

ϕ(i)

=
∑

i∈
⋃n

1 ϕ−1(βj)∩E

ϕ(i)

=
∑
i∈E

ϕ(i),

where the last two equalities are using the obvious fact that

E =
n⋃
1

ϕ−1(βj) ∩ E

is a partition of E \ ϕ−1(0). Thus,∫
E

f dµ = sup
0≤ϕ≤f

ϕ simple

∫
E

ϕ dµ

= sup
0≤ϕ≤f

ϕ simple

∑
i∈E

ϕ(i)

= sup
0≤ϕ≤f

ϕ simple

sup
F⊂E

F finite

∑
i∈F

ϕ(i).
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Now for any finite set F , we have that fχF is a simple function which is maximal
among simple functions which are less than or equal to f on F . Hence, for F
finite,

sup
0≤ϕ≤f

ϕ simple

∑
i∈F

ϕ(i) =
∑
i∈F

f(i).

Thus, using Theorem 1.14,∫
E

f dµ = sup
0≤ϕ≤f

ϕ simple

sup
F⊂E

F finite

∑
i∈F

ϕ(i) = sup
F⊂E

F finite

∑
i∈F

f(i) =
∑
i∈E

f(i).

Applying this lemma to our example shows that for f ∈ L2(µ),

∥f∥2 =
∫
I

|f |2 =
∑
i∈I

|f(i)|2,

justifying our claim that l2(I)—the set of functions f : I → C such that∑
i∈I |f(i)|2 < ∞—is in fact L2(µ) in the special case where µ is the counting

measure on (I,P(I)).

3.3 More on Possibly Uncountable Sums

In our last example we discussed infinite sums where the index set may be uncount-
able, so let us give a more general definition of the sum∑

i∈I

f(i),

where f lands in some topological space X, and I may be uncountable. To do this,
we introduce the concepts of directed sets and nets.

Definition 3.10. A directed set is a partially ordered set (I,⩽) such that for any
pair i1, i2 ∈ I there exists i3 ∈ I with i3 ⩾ i1 and i3 ⩾ i2. Given a topological space
X, a net in X is a pair ((I,⩽), f), where (I,⩽) is a directed set and f is a function
from I into X. We say that a net ((I,⩽), f) converges to x ∈ X, and that x is a limit
of the net, if for every open neighbourhood U of x there exists an element i0 ∈ I
such that f(i) ∈ U whenever i ≥ i0.
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Definition 3.11. If I is a directed set and f : I → X is a function taking its values
in a metric space (X, d), we say that the net ((I,⩽), f) is Cauchy if, for each ε > 0,
there exists an element i0(ε) ∈ I such that d(f(i), f(j)) < ε whenever i, j ≥ i0(ε).
A definition of completeness is as follows: a metric space (X, d) is complete if every
Cauchy net converges in X. We will assume that all our Hilbert and Banach spaces
are complete in this sense.

Exercise 3.12. A metric space X is complete if and only if every Cauchy sequence
converges in X.

If we let F be the set of all finite subsets of I, then F is a directed set ordered
by inclusion, i.e., F ⩽ G if F ⊂ G. For each F ∈ F , we define

f(F ) =
∑
i∈F

f(i),

where f(i) are elements of X, as above; (F , f) is a net in X.

Definition 3.13. We say that the collection {f(i) : i ∈ I} ⊂ X is summable, with
sum x, if the net

(
(F ,⊂), f

)
converges to x; in this case we write

∑
i∈I f(i) = x. By

an abuse of language, we sometimes speak of the net
∑

i∈I f(i).

Remark 3.14. If {xn} is a sequence in X, the convergence of the net
∑

n∈N xn with
respect to set inclusion implies convergence of the sequence

∑∞
n=1 xn in the usual

sense. To see this, suppose that x =
∑

n∈N xn, and let ε > 0. There exists a finite
subset F (ε) ⊂ N such that ∥

∑
i∈F (ε) xi−x∥ < ε for every finite F ⊃ F (ε). Let N ∈ N

be such that F (ε) ⊂ {1, 2, . . . , N}. Then for each n ≥ N , F (ε) ⊂ {1, 2, . . . , n}, and
so ∥

∑n
i=1 xi − x∥ < ε. Thus x =

∑∞
n=1 xn.

Exercise 3.15. When does the converse hold?

Remark 3.16. It is not hard to see that our previous definition of convergence
of a (possibly uncountable) infinite sum agrees with this more general definition in
special case where X = [0,∞]. For suppose that f : I → [0,∞] is such that the net∑

i∈I f(i) converges to x ∈ [0,∞). Then for each ε > 0 there exists a finite set F (ε)
such that for any finite set F ⊃ F (ε),∣∣∣∑

i∈F

f(i)− x
∣∣∣ < ε.

So we can choose F to make
∑

i∈F f(i) as close to x as we like. Since f is nonnegative,
it follows that

∑
i∈F f(i) ≤ x for all finite F ⊂ I, and therefore
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sup
{∑

i∈F

f(i) : F ⊂ I and F finite
}
= x.

In other words,
∑

i∈I f(i) = x in the sense of Definition 3.8.
Conversely, suppose that

sup
{∑

i∈F

f(i) : F ⊂ I andF finite
}
= x < ∞.

Then for each ε > 0 we can choose a finite set F (ε) such that

0 ≤ x−
∑

i∈F (ε)

f(i) < ε.

For any F ⊃ F (ε) we have
∑

i∈F (ε) f(i) ≤
∑

i∈F f(i) ≤ x, and hence∣∣∣x−
∑
i∈F

f(i)
∣∣∣ ≤ ∣∣∣x−

∑
i∈F (ε)

f(i)
∣∣∣ < ε.

So
∑

i∈I f(i) = x in the sense of Definition 3.13.

Proposition 3.17. If {xi} and {yi} are families of vectors in a Hilbert space H ,
indexed by the same set I, such that

∑
i∈I xi = x and

∑
i∈I yi = y, and if α ∈ C,

then

(i)
∑

i∈I αxi = αx,

(ii)
∑

i∈I(xi + yi) = x+ y, and

(iii)
∑

i∈I⟨xi, z⟩ = ⟨x, z⟩ and
∑

i∈I⟨z, xi⟩ = ⟨z, x⟩ for every vector z ∈ H .

Proof. The result follows trivially from the following three relations, which are valid
for any finite F ⊂ I:

(i) ∥αx−
∑

i∈F αxi∥ = |α|∥x−
∑

i∈F xi∥,

(ii) ∥(x+ y)−
∑

i∈F (xi + yi)∥ ≤ ∥x−
∑

i∈F xi∥+ ∥y −
∑

i∈F yi∥,

(iii) |⟨x, z⟩ −
∑

i∈F ⟨xi, z⟩| = |⟨x−
∑

i∈F xi, z⟩| ≤ ∥x−
∑

i∈F xi∥∥z∥.

Remark 3.18. Using Proposition 3.17 and looking at positive and negative, real and
imaginary parts, one sees that Lemma 3.9 holds for all complex-valued functions.
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3.4 The Pythagorean Theorem

We say that x is orthogonal to y if ⟨x, y⟩ = 0. We now present the famous Pythagorean
theorem.

Theorem 3.19 (The Pythagorean Theorem). If x1, x2, . . . , xn are pairwise orthog-
onal then ∥∥∥ n∑

1

xi

∥∥∥2

=
n∑
1

∥xi∥2.

Proof.
∥∥∥∑xi

∥∥∥2

=
〈∑

xi,
∑

xi

〉
=

∑
i,j⟨xi, xj⟩ =

∑
∥xi∥2, where the last equality

is because ⟨xi, xj⟩ = 0 whenever i ̸= j.

The continuity of the norm allows us to extend the Pythagorean Theorem to
include infinite sums:∥∥∥ ∞∑

i=1

xi

∥∥∥2

=
∥∥∥ lim

n→∞

n∑
i=1

xi

∥∥∥2

= lim
n→∞

∥∥∥ n∑
i=1

xi

∥∥∥2

= lim
n→∞

n∑
i=1

∥xi∥2 =
∞∑
i=1

∥xi∥2.

In fact, the theorem holds for uncountable sums. If x =
∑

i∈I xi, where the xi’s are
pairwise orthogonal, then by Lemma 2.5 (iii) we have

∥x∥2 = ⟨x, x⟩ =
∑
i

⟨xi, x⟩ =
∑
i

∑
j

⟨xi, xj⟩ =
∑
i

⟨xi, xi⟩ =
∑
i

∥xi∥2.

3.5 Orthogonal Complements

For E ⊂ H we define E⊥, the orthogonal complement of E in H , to be the set

E⊥ = {x ∈ H : ⟨x, y⟩ = 0 for all y ∈ E}.

By the linearity and continuity of the inner product in the first variable, E⊥ is a
closed subspace of H . Also, for any E ⊂ H , E ∩ E⊥ = 0, for it is easy to see that
0 ∈ E ∩ E⊥, and if x ∈ E ∩ E⊥, then ∥x∥2 = ⟨x, x⟩ = 0 implies that x = 0. We
present a few basic facts about orthogonal complements:

Theorem 3.20. If E ⊂ H , then E ⊂ E⊥⊥ (where E⊥⊥ is the orthogonal comple-
ment of E⊥).

Proof. If x ∈ E and y ∈ E⊥, then x ⊥ y, so x ∈ E⊥⊥. Thus E ⊂ E⊥⊥

Theorem 3.21. If E ⊂ F then F⊥ ⊂ E⊥.
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Proof. If x ∈ F⊥ then x ⊥ y for all y ∈ F , and in particular x ⊥ y for all y ∈ E, and
hence x ∈ E⊥.

Theorem 3.22. If E ⊂ H , E⊥ = E⊥⊥⊥.

Proof. Applying Theorem 3.20 with E⊥ in place of E yields E⊥ ⊂ E⊥⊥⊥, and apply-
ing Theorem 3.21 to the containment E ⊂ E⊥⊥ yields the reverse containment.

3.6 Orthonormal Sets

We say that a subset {ui}i∈I of H is orthonormal if the ui’s are pairwise orthogonal
and of unit length. We now introduce the Gram-Schmidt process, a way of convert-
ing a sequence of linearly independent vectors {xn}∞n=1 into a sequence {un}∞n=1 of
orthonormal vectors such that the linear span of {xn}N1 coincides with the linear
span of {un}N1 for each N . The process is this: we take u1 = x1/∥x1∥. Then we
define each uN in terms of the previous un’s as follows: for each N > 1, we define
vN by vN = xN −

∑N−1
n=1 ⟨xN , un⟩un, and take uN = vN/∥vN∥. Since each un is a

linear combination of x1, . . . xn, we have that xN is not in the span of u1, . . . , uN−1,
and hence vN ̸= 0; so we don’t have to worry about division by zero in our definition
of uN . Moreover, the previously defined u1, . . . , uN−1 are pairwise orthogonal unit
vectors, and hence for m < N we have

⟨vN , um⟩ =
〈
xN −

N−1∑
n=1

⟨xN , un⟩un, um

〉
= ⟨xN , um⟩ −

N−1∑
n=1

⟨xN , un⟩⟨un, um⟩

= ⟨xN , um⟩ − ⟨xN , um⟩∥um∥2

= 0.

Thus uN is orthogonal to u1, . . . , uN−1. Since, as we’ve mentioned before, each un is
a linear combination of x1, . . . , xn, we have

span{u1, . . . , uN} ⊂ span{x1, . . . , xN}

for each N . Also, for each n,

xn = ∥vn∥un +
n−1∑
m=1

⟨xn, um⟩um ∈ span{u1, . . . , un},

and hence span{x1, . . . , xN} ⊂ span{u1, . . . , uN}.
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3.7 Bessel’s Inequality

Proposition 3.23. Given a set I and a function f : I → [0,∞], if∑
i∈I

f(i) < ∞,

then f(i) ̸= 0 for at most a countable number of points.

Proof. Assume that
∑

i∈I f(i) < ∞ and let In = {i ∈ I : f(i) > 1
n
}, so that

{i ∈ I : f(i) ̸= 0} =
∞⋃
n=1

In.

Then for any n and any finite F ⊂ In,∑
i∈F

f(i) >
|F |
n

,

where |F | is the cardinality of F . Thus, if In is infinite, we have∑
i∈I

f(i) ≥
∑
i∈In

f(i) = sup
F⊂In

F finite

∑
i∈F

f(i) ≥ 1

n
sup
F⊂In

F finite

|F | = ∞,

so each In must be finite. Hence, {i ∈ I : f(i) ̸= 0} is countable.

Proposition 3.24 (Bessel’s Inequality). If {ui}i∈I is an orthonormal set in H , then
for any x ∈ H , ∑

i∈I

|⟨x, ui⟩|2 ≤ ∥x∥2.

À propos of the preceding proposition, {i ∈ I : ⟨x, ui⟩ ≠ 0} is countable.

Proof. For any finite subset F ⊂ I we have

0 ≤
∥∥∥x−

∑
i∈F

⟨x, ui⟩ui

∥∥∥2

= ∥x∥2 − 2Re
〈
x,
∑
i∈F

⟨x, ui⟩ui

〉
+
∥∥∥∑

i∈F

⟨x, ui⟩ui

∥∥∥2

= ∥x∥2 − 2Re
∑
i∈F

⟨x, ui⟩⟨x, ui⟩+
∑
i∈F

|⟨x, ui⟩|2

= ∥x∥2 − 2
∑
i∈F

|⟨x, ui⟩|2 +
∑
i∈F

|⟨x, ui⟩|2

= ∥x∥2 −
∑
i∈F

|⟨x, ui⟩|2,
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where the Pythagorean theorem was used in the third line. So∑
i∈F

|⟨x, ui⟩|2 ≤ ∥x∥2

for any finite F ⊂ I, and taking the supremum over the set of all such F ’s yields the
result.

3.8 Orthogonal Projections

The following is essentially Theorem 5.24 in Folland, and we refer the reader to his
book for a proof.

Theorem 3.25 (The Projection Theorem). If M is a closed subspace of H , then
for each x ∈ H there exists a unique y0 ∈ M such that

∥x− y0∥ = dist(x,M ) ≡ inf{∥x− y∥ : y ∈ M }.

Moreover, x− y0 ∈ M⊥.

Corollary 3.26. Let M ⩽ H . For each x ∈ H , there are unique elements y0 ∈ M
and z0 ∈ M⊥ such that x = y0 + z0.

Proof. By the projection theorem there is a y0 ∈ M such that x − y0 ∈ M⊥. Let
z0 = x− y0; then x = y0 + z0. If x = y1 + z1 with y1 ∈ M and z1 ∈ M⊥, then

(y0 − y1) + (z0 − z1) = 0,

whence, by the Pythagorean theorem,

∥y0 − y1∥2 + ∥z0 − z1∥2 = 0,

whence y0 = y1 and z0 = z1.

Corollary 3.27. For each x ∈ H , there is a unique element y0 ∈ M such that
x− y0 ∈ M⊥.

Definition 3.28. Given x ∈ H and M ⩽ H , Corollary 3.26 determines a well-
defined map PM : H → M , given by PMx = y0. We call PM the orthogonal
projection of H onto M . Notice that PMx is the unique element described in
Corollary 3.27.

Theorem 3.29. For any M ⩽ H , PM is a bounded linear transformation.
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Proof. Let x1, x2 ∈ H , and let α ∈ C. By Corollary 3.26 there exist y1, y2 ∈ M and
z1, z2 ∈ M⊥ such that x1 = y1 + z1 and x2 = y2 + z2. Therefore,

x1 + αx2 = y1 + z1 + α(y2 + z2)

= (y1 + αy2) + (z1 + αz2),

whence
PM (x1 + αx2) = y1 + αy2 = PMx1 + αPMx2.

To establish boundedness, we employ the Pythagorean theorem:

∥PMx1∥2 = ∥y1∥2 ≤ ∥y1∥2 + ∥z1∥2 = ∥y1 + z1∥2 = ∥x1∥2.

In fact, we have ∥PM∥op = 1, since for any 0 ̸= x ∈ M we have PMx = x.

Theorem 3.30. Given PM , we have

(i) kerPM = M⊥; and

(ii) ranPM = {x ∈ H : PMx = x} = M .

Proof. (i): If x ∈ kerPM , then PMx = 0, so x = x − PMx ∈ M⊥. Conversely, if
x ∈ M⊥, then x− 0 ∈ M⊥, and hence by uniqueness PMx = 0.

(ii): Clearly,
{x ∈ H : PMx = x} ⊂ ranPM ,

and by definition of PM we have ranPM ⊂ M . Moreover, if x ∈ M , then x − x =
0 ∈ M⊥, which by uniqueness implies x = PMx. Thus

M ⊂ {x ∈ H : PMx = x},

and we therefore have a circular chain of inclusions that gives the result.

3.9 Vector Sums; Internal Direct Sums

As a particular case of the definition given in Section 3.3, we say that a family {xi}i∈I
of vectors in H is summable, with sum x, if the net (F , f)—where F is the set
of all finite subsets F ⊂ I directed under inclusion, and f : F → H is the map
F 7→

∑
i∈F xi—converges to x. In this case we write

∑
i∈I xi = x, and we say that

the infinite vector sum
∑

i∈I xi converges in H .

Theorem 3.31. Let {xi} be an orthogonal family of vectors in H ; that is, xi ⊥ xj

whenever i ̸= j. Then {xi} is summable if and only if
∑

i∈I ∥xi∥2 < ∞.
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Proof. 1 The “only if” direction follows immediately from the Pythagorean theorem:
if x =

∑
i∈I xi, then ∑

i∈I

∥xi∥2 =
∥∥∥∑

i∈I

xi

∥∥∥2

= ∥x∥2 < ∞.

For the other direction, suppose that
∑

i∈I ∥xi∥2 < ∞. By Proposition 3.23, the
set {i ∈ I : xi ̸= 0} is countable, so we can enumerate its elements: {x1, x2, . . . }. For
any ε > 0 there is an N ∈ N such that

∞∑
n=N

∥xi∥2 < ε2.

If we let F be the set of all finite subsets of I (directed by inclusion), and if for each
F ∈ F we let f(F ) =

∑
i∈F xi, then (F , f) is a net in H . Let F0 = {1, . . . , N − 1}

and suppose that F,G ∈ F are such that F and G both contain F0. We will show
that ∥f(F ) − f(G)∥ < ε, so that the net (F , x) is Cauchy. By the Pythagorean
theorem we have that

∥f(F )− f(G)∥2 =
∥∥∥∑

i∈F

xi −
∑
i∈G

xi

∥∥∥2

=
∥∥∥ ∑

i∈F\G

xi −
∑

i∈G\F

xi

∥∥∥2

=
∑

i∈F△G

∥xi∥2,

where F△G denotes the symmetric difference (F \G)∪ (G \F ). Now F△G is finite
and excludes F0, so it follows that there is a natural number M > N such that

{i ∈ F△G : xi ̸= 0} ⊂ [N,M ].

Hence, ∑
i∈F△G

∥xi∥2 ≤
M∑

n=N

∥xi∥2 < ε2.

So (F , x) is indeed a Cauchy net in H , and since H is complete, this net converges.

1for a different proof, see Halmos, §8
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Definition 3.32. An arbitrary intersection of closed subspaces is still a closed sub-
space, so given a subset E ⊂ H we can take the intersection of all closed subspaces
containing E to get a minimal closed subspace containing E. We denote this closed
subspace by ∨E and call it the closed linear span of E. We sometimes write M ⩽ H
to express that M is a closed subspace of H .

Proposition 3.33. Given a nonempty subset E ⊂ H , ∨E ⩽ H , and ∨E is the
smallest closed subspace of H containing E. Moreover, ∨E = cl[spanE].

Proof. We know from topology that arbitrary intersections of closed sets are closed.
It’s also clear that vector subspaces are closed under intersection, so ∨E is indeed a
closed subspace. To see that ∨E is the smallest closed subspace containing E, note
that any closed subspace containing E is trivially contained in⋂

M⊃E
M a closed subspace

M = ∨E.

Now to prove the second part of the proposition. Since ∨E is a vector subspace
containing E, it is clear that spanE ⊂ ∨E. But ∨E is closed, so cl[spanE] ⊂ ∨E.
For the reverse inclusion, it suffices to show that cl[spanE] is a vector subspace,
since cl[spanE] ⊃ E and ∨E is the smallest closed subspace containing E. Let
x, y ∈ cl[spanE] and α ∈ C. There are sequences {xn}, {yn} in spanE such that
xn → x and yn → y in H , and hence

∥x+ y − (xn + yn)∥ ≤ ∥x− xn∥+ ∥y − yn∥ → 0,

and
∥αx− αxn∥ = |α|∥x− xn∥ → 0.

So cl[spanE] is closed under addition and scalar multiplication. Since cl[spanE] is
clearly nonempty, we have shown that cl[spanE] is a vector subspace, which com-
pletes the proof. We have also shown that the closure of any vector subspace is a
(closed) vector subspace.

Corollary 3.34. If Y ⊂ H is a vector subspace, then ∨Y = Y .

Definition 3.35. Given a family {Mi}i∈I of closed subspaces, we define their vector
sum, denoted

∑
i∈I Mi, to be the collection of all vectors of the form

∑
i∈I xi, where

{xi}i∈I is summable, with xi ∈ Mi for each i. It is easy to verify that
∑

i∈I Mi is a
vector subspace of H .
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Definition 3.36. Given a family {Mi}i∈I of closed subspaces, we define their closed
linear span, denoted

∨
i∈I Mi, to be the closed linear span of

⋃
i∈I Mi in H .

Theorem 3.37. For any family {Mi}i∈I of closed subspaces,
∨

i∈I Mi = cl
[∑

i∈I Mi

]
.

Proof. Any element of span{
⋃

i∈I Mi} can be written as
∑

i∈I xi with xi ∈ Mi for
each i, and xi = 0 for all but finitely many i; hence span{

⋃
i∈I Mi} ⊂

∑
i∈I Mi, and

taking closures gives
∨

i∈I Mi ⊂ cl
[∑

i∈I Mi

]
.

On the other hand, it follows from the definition of infinite vector sums that
span{

⋃
i∈I Mi} is dense in

∑
i∈I Mi, i.e.,∑

i∈I

Mi ⊂ cl
[
span{

⋃
i∈I

Mi}
]
,

whence cl
[∑

i∈I Mi

]
⊂

∨
i∈I Mi.

Definition 3.38. If {Mi}i∈I is a family of closed subspaces such that Mi ⊥ Mj

whenever i ̸= j, then we say that {Mi}i∈I is an orthogonal family of closed subspaces.

The following is Theorem 13.2 in Halmos, and we essentially reproduce his proof
here.

Theorem 3.39. If {Mi}i∈I is an orthogonal family of closed subspaces, then
∨

i∈I Mi =∑
i∈I Mi. Moreover, each element of

∑
i∈I Mi can be expressed uniquely in the form∑

i∈I xi with xi ∈ Mi for each i.

Proof. To prove the first part of the theorem is suffices to show that
∨

i∈I Mi ⊂∑
i∈I Mi; Theorem 3.37 gives the other inclusion. Let x ∈

∨
i∈I Mi. By Corollary

3.26, there exist, for each i ∈ I, yi ∈ Mi and zi ∈ M⊥
i such that x = yi+zi. For each

i such that yi ̸= 0 we have ⟨x, yi/∥yi∥⟩ = ∥yi∥. It follows from Bessel’s inequality
that

∑
i∈I ∥yi∥2 < ∞, whence by 3.31, {yi} is summable; call its sum x0. If ξ ∈ Mj

for some j, then by Proposition 3.17,

⟨x− x0, ξ⟩ = ⟨yj, ξ⟩+ ⟨zj, ξ⟩ − ⟨x0, ξ⟩

= ⟨yj, ξ⟩+ ⟨zj, ξ⟩ −
∑
i∈I

⟨yi, ξ⟩

= 0.

Thus x−x0 ∈ M⊥
j for all j. It follows that x−x0 ⊥

∑
i∈I Mi; by Theorem 3.37 and

the continuity of the inner product, we have x−x0 ⊥
∨

i∈I Mi. But x−x0 ∈
∨

i∈I Mi,
therefore x− x0 = 0, proving that x ∈

∑
i∈I Mi.

For second part of the theorem, note that if
∑

i∈I xi = 0, with xi ∈ Mi for each i,
then by the Pythagorean theorem, each xi = 0. It follows that element of

∑
i∈I Mi

can be expressed uniquely in the form
∑

i∈I xi with xi ∈ Mi for each i.
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Definition 3.40. If the subspaces {Mi}i∈I of H are mutually orthogonal, then we
say that M =

∑
i∈I Mi is their interal direct sum; in this case, we sometimes write

M =
⊕int

i∈I Mi.

3.10 More on Orthogonal Projections

Proposition 3.41. If M ⩽ H , then I − PM = PM⊥ .

Proof. Given x ∈ H ,
(I − PM )x = x− PMx ∈ M⊥

by definition of PM . Moreover,

x− (I − PM )x = PMx ∈ M ⊂ M⊥⊥.

So (I −PM )x is the unique element of M⊥ such that x− (I −PM )x ∈ M⊥⊥, which
means that I − PM is the projection of H onto M⊥.

Corollary 3.42. If M ⩽ H , then M⊥⊥ = M .

Proof. By Theorem 3.30 (ii) we have

M = ranPM = {x ∈ H : PMx = x}.

But PMx = x if and only if (I − PM )x = 0, so

ker(I − PM ) = ranPM .

Now by Proposition 3.41 we have I − PM = PM⊥ , and by Theorem 3.30 (i) this
means

ker(I − PM ) = M⊥⊥.

Altogether,
M⊥⊥ = ker(I − PM ) = ranPM = M .

Corollary 3.43. If E ⊂ H then E⊥⊥ = ∨E.

Proof. E ⊂ E⊥⊥, and E⊥⊥ is a closed subspace of H . Therefore, since ∨E is
the smallest closed subspace containing E, we have ∨E ⊂ E⊥⊥. For the reverse
inclusion, note that E ⊂ ∨E, so applying Theorem 3.21 yields (∨E)⊥ ⊂ E⊥, and
applying Theorem 3.21 again to this, together with Corollary 3.42, yields E⊥⊥ ⊂
(∨E)⊥⊥ = ∨E.
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Corollary 3.44. If Y is a vector subspace in H , then Y is dense in H if and only
if Y ⊥ = 0.

Proof. If Y ⊥ = 0, then

H = 0⊥ = Y ⊥⊥ = ∨Y = Y .

Conversely, if Y = H , then H = Y = ∨Y = Y ⊥⊥, and therefore

0 = H ⊥ = Y ⊥⊥⊥ = Y ⊥.

3.11 Isomorphisms in Hilbert Space

A linear map U : X → Y is an isomorphism of normed vector spaces if it is a
continuous bijection with continuous inverse. When such a linear map exists, X
and Y are said to be isomorphic. If, in addition, U is an isometry—that is, a norm-
preserving map—then U is an isometric isomorphism. When X and Y are Hilbert
spaces, it turns out that requiring an isomorphism to be isometric ensures that it
respects the inner product structure:

Proposition 3.45. For a linear map U : H → K , the condition that

⟨Ux, Uy⟩ = ⟨x, y⟩ (6)

for all x, y is equivalent to U being an isometry.

Proof. If ⟨Ux, Uy⟩ = ⟨x, y⟩ for all x, y, then

∥Ux∥2 = ⟨Ux, Ux⟩ = ⟨x, x⟩ = ∥x∥2

so U is an isometry. Suppose, conversely, that U is an isometry. Then if x, y ∈ H
and λ ∈ F, where F = R or C, we have

∥x+ λy∥2 = ∥Ux+ λUy∥2.

Expanding both sides according to the identity ∥x∥2 = ⟨x, x⟩ yields

∥x∥2 + 2Re λ̄⟨x, y⟩+ |λ|2∥y∥2 = ∥Ux∥2 + 2Re λ̄⟨Ux, Uy⟩+ |λ|2∥Uy∥2. (7)

But since U is an isometry, we have ∥Ux∥ = ∥x∥ and ∥Uy∥ = ∥y∥, so that (7)
becomes

Re λ̄⟨x, y⟩ = Re λ̄⟨Ux, Uy⟩
for any λ ∈ F. If F = R, take λ = 1. If F = C, take λ = 1 to see that Re ⟨x, y⟩ =
Re ⟨Ux, Uy⟩; since for any z ∈ C we have Re(−ız) = Im(z), taking λ = ı shows that
Im ⟨x, y⟩ = Im ⟨Ux, Uy⟩.

34



If U is a surjective linear map which satisfies (6), then it follows from the non-
degeneracy property of the norm that U is injective, and it follows from Proposition
2.7 and the preceding proposition that U is a homeomorphism (that is, a continuous
map with a continuous inverse). Thus any surjective linear map satisfying (6)—i.e.,
any surjective linear isometry—is an isometric isomorphism. Potentially confusing
matters is the fact that some authors, such as Conway in [4], define an isomor-
phism between two Hilbert spaces to be any surjective map satisfying (6). This is
understandable, because isometric isomorphisms are the structure-preserving maps
between Hilbert spaces—the “true” isomorphisms, as Folland puts it. Some authors
call these maps unitary maps, or unitary transformations, while others reserve the
term “unitary” for isometric isomorphisms from a Hilbert space to itself. In linear
algebra, equation (6) with inner product taken to be the usual scalar product on
Cn, is one of the equivalent conditions for a complex square matrix U to be called
unitary.

Consider the map fy : H → C given by fy(x) = ⟨x, y⟩. The Cauchy-Schwarz
inequality gives

|fy(x)| = |⟨x, y⟩| ≤ ∥x∥∥y∥,

so fy is bounded and ∥fy∥ ≤ ∥y∥. But since

fy(y/∥y∥) = ∥y∥2/∥y∥ = ∥y∥,

we have
∥fy∥ = sup{|fy(x)| : ∥x∥ = 1} ≥ ∥y∥

and hence ∥fy∥ = ∥y∥. So the map y 7→ fy is an antilinear (or conjugate linear)
isometry from H into H ∗, where H ∗ denotes the dual space of H , i.e., the space
of bounded linear functionals on H with the operator norm. It can be shown (see
Conway [4], pp. 74–75, for example) that for any Banach space B, the dual space
B∗ is a Banach space. Moreover, for a Hilbert space H the operator norm on H ∗

can be shown to satisfy the parallelogram law, making H ∗ a Hilbert space. This
next theorem shows that this map is in fact surjective, and therefore the antilinear
map y 7→ fy is an anti-isomorphism from H to its dual.

Theorem 3.46 (The Riesz Representation Theorem). Given any ξ ∈ H ∗, there
exists a unique y ∈ H such that ξ(x) = ⟨x, y⟩ for all x ∈ H , i.e. ξ = fy.

Proof. The uniqueness part is easy: if ⟨x, y⟩ = ⟨x, y′⟩ for all x ∈ H , then taking
x = y − y′ gives ∥y − y′∥2 = 0, and hence y = y′. To show existence, let M = ker ξ.
If ξ is the zero functional then we simply take y = 0, so we may assume M ̸= H .
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Then M⊥ ̸= 0; for if M⊥ were 0 then since it is easy to show that M ⩽ H , we
would have

M = M⊥⊥ = 0⊥ = H .

Now, there exists y0 ∈ M⊥ with ∥y0∥ = 1. For x ∈ H , if u = ξ(x)y0 − ξ(y0)x then

ξ(u) = ξ(x)ξ(y0)− ξ(y0)ξ(x) = 0,

so u ∈ M . Hence,

0 = ⟨u, y0⟩ = ξ(x)∥y0∥2 − ξ(y0)⟨x, y0⟩ = ξ(x)− ⟨x, ξ(y0)y0⟩.

Thus ξ(x) = ⟨x, y⟩, where y = ξ(y0)y0.

3.12 Basis in Hilbert Space

While Banach spaces inherit the notions of basis and dimension from their vector
space structure (Hamel basis and dimension), the structure of the inner product on
a Hilbert space H gives it another notion of basis: orthonormal basis.

Definition 3.47. An orthonormal basis for a Hilbert space H is a maximal or-
thonormal subset of H .

Given any Hilbert space H , the set of orthonormal subsets of H is a partially
ordered set, ordered by inclusion. An application of Zorn’s lemma shows that H
has an orthonormal basis.

A remark on the distinction between the concepts of orthonormal basis and Hamel
basis: a Hamel basis for a vector space V is a maximal linearly independent subset of
V , or equivalently, a linearly independent subset which spans V . A finite orthonormal
basis is a Hamel basis (as we shall later see), but it can be shown that an infinite
orthonormal basis for a Hilbert space is never a Hamel basis (see [4], p. 19).

Theorem 3.48 (Basis Theorem). If {ui}i∈I is an orthonormal set in H , then the
following are equivalent:

(i) {ui}i∈I is an orthonormal basis for H .

(ii) {ui : i ∈ I}⊥ = 0.

(iii)
∨

i∈I ui = H .

(iv) If x ∈ H , then x =
∑

i∈I⟨x, ui⟩ui.
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Proof. (i) =⇒ (ii): If x ⊥ {ui}i∈I and x ̸= 0, then {ui}i∈I∪
{

x
∥x∥

}
is an orthornormal

set which properly contains {ui}i∈I , contradicting maximality.
(ii) ⇐⇒ (iii): It follows from Corollary 3.44 that cl

[
span {ui}i∈I

]
= H if and

only if
(
span {ui}i∈I

)⊥
= 0. It is also easy to see that

(
span {ui}i∈I

)⊥
= 0 if and

only if {ui : i ∈ I}⊥ = 0. This, together with the fact that

cl
[
span {ui}i∈I

]
=

∨
i∈I

ui

gives the equivalence of (ii) and (iii).
(ii) =⇒ (iv): If x ∈ H , let y = x−

∑
i∈I⟨x, ui⟩ui; y is well-defined by Proposi-

tion 3.31. For any uj ∈ {ui}i∈I we have

⟨y, uj⟩ =
〈
x−

∑
i∈I

⟨x, ui⟩ui, uj

〉
= ⟨x, uj⟩ −

∑
i∈I

⟨x, ui⟩⟨ui, uj⟩ by Proposition 3.17

= ⟨x, uj⟩ − ⟨x, uj⟩
= 0.

Since this holds for any uj ∈ {ui}i∈I , we have y ∈ {ui : i ∈ I}⊥, and hence y = 0.
(iv) =⇒ (i): Suppose that (iv) holds, but {ui}i∈I is not a maximal orthonormal

set in H . Then there exists a unit vector ν ∈ {ui : i ∈ I}⊥. Writing ν =∑
i∈I⟨ν, ui⟩ui and applying the Pythagorean theorem gives

∥ν∥2 =
∑
i∈I

|⟨ν, ui⟩|2 = 0,

a contradiction.

The coefficients ⟨x, ui⟩ in (iv) are called the Fourier coefficients of x relative to
the basis {ui}i∈I , and the series representation in (iv) is called the Fourier expansion
or Fourier series for x.

Theorem 3.49 (Parseval’s Identity). The family {ui}i∈I is an orthonormal basis for
H if and only if

∥x∥2 =
∑
i∈I

|⟨x, ui⟩|2 for each x ∈ H . (8)
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Proof. If {ui}i∈I is an orthonormal basis, then applying the Pythagorean theorem to
the Fourier series for x gives (8). Conversely, if {ui}i∈I is not an orthonormal basis,
then there exists a unit vector ν such that ν ⊥ ui for all i; then∑

i∈I

|⟨ν, ui⟩|2 = 0,

and hence (8) does not hold.

Remark 3.50. The Fourier series
∑

i∈I⟨x, ui⟩ui for x converges whenever {ui}i∈I
is an orthonormal family—this follows from Theorem 3.31 together with Bessel’s
inequality. Parseval’s identity tells us that when {ui}i∈I is an orthonormal basis,
Bessel’s inequality holds with equality ; and vice-versa.

3.13 The Dimension of a Hilbert Space

Proposition 3.51. Every finite-dimensional vector subspace of a Hilbert space is
closed.

Proof. 2 Let M ⊂ H be a linear subspace with Hamel basis {x1, x2, . . . , xn}. Let’s
assume that M is not closed, and let y ∈ M \M . Then x1, x2, . . . , xn, y are linearly
independent, and hence, by Gram-Schmidt, there exist u1, u2, . . . , un+1 such that ui

are pairwise orthonormal,

span{u1, . . . , ui} = span{x1, . . . , xi} (9)

for i = 1, . . . , n, and

span{u1, . . . , un, un+1} = span{x1, . . . , xn, y}. (10)

Then (9) implies that M = cl
[
span{u1, . . . , un}

]
, i.e.,

M =
∨

{u1, . . . , un},

and therefore {u1, . . . , un} is an orthonormal basis for M . But (10) says that

{u1, . . . , un+1} ⊂ M ,

contradicting the maximality of {u1, . . . , un} as an orthonormal set in M . Hence
M \ M = ∅, so that M = M is closed.

2It is true more generally that every finite-dimensional vector subspace of a normed vector space
is closed—see Loomis & Sternberg [9], p. 209; their proof makes implicit use of ACω, the axiom of
countable choice.
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Proposition 3.52. Any two orthonormal bases of a Hilbert space H have the same
cardinality.

Proof. Let {ui}i∈I and {vj}j∈J be two bases for H . Let |I| denote the cardinality
of I, and |J | the cardinality of J . Suppose that I is finite and |I| < |J |. The ui are
linearly independent, for if

α1u1, . . . , α|I|u|I| = 0,

then for i ∈ {1, 2, . . . , |I|} we have

0 = ⟨α1u1, . . . , α|I|u|I|, ui⟩ = αi∥ui∥2 = αi.

Moreover, we have from (iv) of Theorem 3.48 that H = span {u1, . . . , u|I|}, so
{ui}i∈I is in fact a Hamel basis for H . Choose any |I| + 1 vectors in F . By the
same argument used above, these vectors are linearly independent. Moreover, they
are in H = span {u1, . . . , u|I|}, which is a contradiction because, as we know from
basic linear algebra, we cannot have |I| + 1 linearly independent vectors in a linear
subspace spanned by |I| vectors. Thus if at least one of the two bases is finite, they
must have the same cardinality.

Suppose that both bases are infinite. For each i ∈ I, set

Ji ≡ {j ∈ J : ⟨ui, vj⟩ ≠ 0}.

Since {vj}j∈J is an orthonormal set, we have that Ji is countable for each i. Now
by (ii) of Theorem 3.48, each j ∈ J must belong to at least one Ji, and hence
J =

⋃
i∈I Ji. Therefore, |J | ≤ |I| · ℵ0 = |I|. Similarly, |I| ≤ |J |.

Definition 3.53. The dimension of a Hilbert space H is the cardinality of any basis
for H , and is denoted by dimH .

Lemma 3.54. If (X, d) is a separable metric space and {Bi}i∈I is a collection of
disjoint open balls in X, then I must be countable.

Proof. Let D be a countable dense subset of X. Then Bi ∩ D ̸= ∅ for each i ∈ I.
Thus there is an element xi ∈ Bi ∩ D for each i, and since the Bi are disjoint,

xi ↔ Bi

is a 1 to 1 correspondence. Thus3 there is collection of points {xi : i ∈ I} ⊂ D with
the cardinality of I, which proves that I is countable.

3by ACω, the axiom of countable choice
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Proposition 3.55. If H is an infinite dimensional Hilbert space, then H is sepa-
rable if and only if dimH = ℵ0.

Proof. We prove this for H a complex Hilbert space—when H is a Hilbert space
over the reals, the proof is even simpler. Suppose that dimH = ℵ0 and let {ui}i∈I be
a basis for H . Since {ui}i∈I is countable we can enumerate its elements: {u1, u2, . . . }.

Let
Q+ ıQ = {q + rı : q, r ∈ Q};

it is easy to show that Q+ ıQ is dense in C. Let

D0 =
{ n∑

j=1

βjuj : βj ∈ Q+ ıQ, n ∈ N
}
,

and let

D =
{ n∑

j=1

αjuj : αj ∈ C, n ∈ N
}
.

It is easy to verify that D0 is dense in D . Now let x ∈ H ; by (iv) of Theorem 3.48,
x =

∑∞
i=1⟨x, ui⟩ui, and the partial sums of this infinite series are in D ; so D is dense

in H . Together with the fact that D ⊂ D0, we have D0 = D = H .
Conversely, suppose that H is separable and let {ui}i∈I be a basis. Given ui, uj ∈

{ui}i∈I with i ̸= j, we have

∥ui − uj∥2 = ∥ui∥2 + ∥uj∥2 = 2,

and hence
{
B(ui,

1√
2
) : i ∈ I

}
is a collection of disjoint open balls in H . By

Lemma 3.54, {ui}i∈I is countable; therefore dimH = ℵ0.

Proposition 3.56. Consider the Hilbert space l2(I). The collection {δi}i∈I given
by

δi(k) =

{
1 if i = k
0 if i ̸= k,

is an orthonormal basis. Therefore the dimension of l2(I) is |I|.

Proof. For any i ∈ I we have ∥δi∥2 =
∑

k∈I |δi(k)|2 = 1, so each δi is a unit vector.
If i ̸= j then

⟨δi, δj⟩ =
∑
k∈I

δi(k)δj(k) = 0,

40



so the δi are pairwise orthogonal. Thus, {δi}i∈I is an orthonormal set in l2(I). It is
easy to see that any f ∈ l2(I) may be written as f =

∑
i∈I f(i)δi, and for any i ∈ I

we have
⟨f, δi⟩ ≡

∑
k∈I

f(k)δi(k) = f(i).

Thus f =
∑

i∈I⟨f, δi⟩δi, which, by Theorem 3.48, proves that {δi}i∈I is a basis for
l2(I).

Theorem 3.57. If H is a Hilbert space with orthonormal basis {ui}i∈I , then H is
isometrically isomorphic to l2(I). It follows that two Hilbert spaces are isometrically
isomorphic if and only if they have the same dimension.

Proof. For each x ∈ H , define U(x) : I → C by U(x)(i) = ⟨x, ui⟩. Observe that
U(x) ∈ l2(I), since by Bessel’s inequality,

∑
i∈I |U(x)(i)|2 ≤ ∥x∥2. Moreover, U is

linear because the inner product is linear in the first variable, and U is an isometry
because, by the (iv) of Basis Theorem together with the Pythagorean theorem, we
have

∥Ux∥2 =
∑
i∈I

|⟨x, ui⟩|2 = ∥x∥2.

Now let f ∈ l2(I); then ∑
i∈I

∥f(i)ui∥2 =
∑
i∈I

|f(i)|2 < ∞,

so
∑

i∈I f(i)ui converges in H . Since U is linear and continuous, we may write

f =
∑
i∈I

f(i)U(i) = U
(∑

i∈I

f(i)ui

)
;

therefore U is surjective, and is therefore an isometric isomorphism.
We now turn to the second statement in the theorem. Suppose that U : H → K

is an isomorphism of Hilbert spaces. Let {ui}i∈I be a basis for H , and let vi = U(ui)
for each i. We will show that {vi : i ∈ I} is a basis for K , thereby showing that
H and K have the same dimension. It’s clear that vi is a unit vector for each i,
as U is an isometry. That the vi are mutually orthogonal comes from the identity
⟨Ux, Uy⟩ = ⟨x, y⟩. Lastly, the maximality of {vi}i∈I comes from the maximality of
{ui}i∈I ; for if there existed a unit vector η ⊥ {vi : i ∈ I}, then η = Uξ for some unit
vector ξ ∈ H , ξ /∈ {ui}i∈I ; but then

⟨ξ, ui⟩ = ⟨η, vi⟩ = 0,
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contradicting the maximality of {ui}i∈I as an orthonormal set in H .
On the other hand, if H and K have the same dimension, we can index their

bases with the same set I, and it follows from the first statement in the theorem that
they are isometrically isomorphic.

3.14 Example: The Fourier Transform on the Circle.

We wish to give an important example of the isomorphism described in Theorem 3.57.
To this end, we cover some material from complex analysis, including the Weierstrass
Approximation Theorem for the circle in C. Generally, we follow Conway’s books
[4],[5], filling in details and working through what he leaves as exercise.

Consider the space L2[0, 2π]; this is a Hilbert space with inner product

⟨f, g⟩L2[0,2π] =
1

2π

∫ 2π

0

f(θ)g(θ) dθ.

Let D denote the open disk of radius 1 in C, and let ∂D denote its boundary. Let
γ : [0, 2π] → ∂D be the curve defined by γ(θ) = eıθ. We endow L2[∂D] with the
inner product

⟨f, g⟩L2[∂D] =
1

2π

∫
γ

f(z)g(z)| dz|

≡ 1

2π

∫ 2π

0

f(γ(θ))g(γ(θ))|γ′(θ)| dθ

=
1

2π

∫ 2π

0

f(eıθ)g(eıθ)|ıeıθ| dθ

=
1

2π

∫ 2π

0

f(eıθ)g(eıθ) dθ

= ⟨f ◦ γ, g ◦ γ⟩L2[0,2π].

Every f ∈ L2[∂D] maps to an element f ∈ L2[0, 2π] via f 7→ f ◦ γ. This map
is surjective because γ is a bijection from [0, 2π) onto ∂D, and elements of L2 are
not determined by values on sets of measure zero. Thus f 7→ f ◦ γ is an isometric
isomorphism from L2[∂D] onto L2[0, 2π].

We record a basic fact from complex analysis:

Proposition 3.58 (Lemma 1.0 in [10]). Suppose (cn)
∞
n=0 is a sequence of complex

numbers, and define R ∈ [0,∞] by

R = sup{ρ ≥ 0 : the sequence (cnρ
n) is bounded}
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Then the series
∑∞

n=0 |cn||z − z0|n converges uniformly on every compact subset of
the ball B(z0, R), and the power series

∑∞
n=0 cn(z − z0)

n diverges at every point z
such that |z − z0| > R.

Theorem 3.59 (The Weierstrass Approximation Theorem for ∂D). Let C[∂D] be
the set of continuous, complex-valued functions on ∂D. The polynomials in z, z
are uniformly dense in C[∂D]. In other words, for each f ∈ C[∂D], there exists a
sequence of polynomials pN(z, z) that converges to f uniformly on ∂D.

Proof. This is part of exercise 3 in [5], pp. 262–263. First we show that if g : D → C
is a continuous function and, for 0 ≤ r < 1, gr is defined on ∂D by gr(z) = g(rz),
then gr → g uniformly on ∂D as r → 1−. To see this, first note that since g is
continuous and D is compact, g is uniformly continuous on D. For all z ∈ ∂D, we
have

|z − rz| = (1− r)||z| = 1− r,

which tends to 0 as r → 1−; thus, by the uniform continuity of g on D, we have
∥g − gr∥unif → 0 as r → 1−.

Now, if f : ∂D → C is a continuous function, we can define a function f̃ : D → C
by f̃(z) = f(z) for z ∈ ∂D, and

f̃(reıθ) =
1

2π

∫ 2π

0

f(eıt)Pr(θ − t) dt,

for 0 ≤ r < 1, where Pr is the Poisson kernel, defined by

Pr(θ) =
∞∑

n=−∞

r|n|eıθn,

for 0 ≤ r < 1 and −∞ < θ < ∞. An application of Proposition 3.58 shows that the
Poisson kernel is well-defined. We note that f̃ is continuous on D, by Theorem 2.4
on page 257 of [5].

We define f̃r(z) = f̃(rz) for each 0 ≤ r < 1, and we show that for each r, there
exists a sequence of polynomials pN(z, z) that converges uniformly to f̃r on ∂D. Let

pN(θ) =
N∑

n=−N

( 1

2π

∫ 2π

0

f(eıt)e−ıtn dt
)
r|n|eıθn;
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letting z = eıθ and γ as above, we see that pN may be regarded as a polynomial in
z and z; explicitly,

pN(z, z) =
N∑

n=−N

( 1

2π

∫
γ

f(u)un du
)
r|n|zn

=
1

2π

∫
γ

f(u) du+
N∑

n=1

( 1

2π

∫
γ

f(u)un du
)
rnzn +

N∑
n=1

( 1

2π

∫
γ

f(u)un du
)
rnzn.

Now since f is continuous on ∂D, f is bounded there, by M , say. Let

q(θ, t) =
∞∑

n=−∞

r|n|eı(θ−t)n,

and let

qN(θ, t) =
N∑

n=−N

r|n|eı(θ−t)n

denote the N -th symmetric partial sum of q. It follows from Proposition 3.58 that
qN converges to q absolutely and uniformly on [0, 2π]× [0, 2π]. Thus for each ε > 0
there exists an N(ε, r) depending on ε and r such that

∥qN − q∥unif <
ε

M

for all N ≥ N(ε, r). Hence for any z = eiθ ∈ ∂D and any N ≥ N(ε, r),

|pN(z, z)− f̃r(z)|
= |pN(θ)− f̃(reıθ)|

=
∣∣∣ N∑
n=−N

[( 1

2π

∫ 2π

0

f(eıt)e−ıtn dt
)
r|n|eıθn

]
− 1

2π

∫ 2π

0

f(eıt)
∞∑

n=−∞

r|n|eı(θ−t)n dt
∣∣∣

=
1

2π

∣∣∣ ∫ 2π

0

f(eıt)
[ N∑
n=−N

r|n|eı(θ−t)n −
∞∑

n=−∞

r|n|eı(θ−t)n
]
dt
∣∣∣

≤ 1

2π

∫ 2π

0

|f(eıt)||qN(θ, t)− q(θ, t)| dt

≤ ε.

Therefore,
∥pN(z, z)− f̃r(z)∥unif ≤ ε,
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proving that pN(z, z) converges uniformly to f̃r(z) on ∂D.
Finally, for z ∈ ∂D we have

∥pN(z, z)− f(z)∥unif ≤ ∥pN(z, z)− f̃r(z)∥unif + ∥f̃r(z)− f(z)∥unif ;

choosing r sufficiently close to 1, we can make the second term on the right hand side
as small as we like; then, choosing N—which will depend on r—sufficiently large, we
can make the first term on the right hand side as small as we like. Thus pN converges
uniformly to f on ∂D.

We will need the following lemma:

Lemma 3.60 (Theorem 7.1 in [3]). Suppose that (X,µ) is a finite measure space,
and {fn} is a sequence in Lp(X,µ) that converges uniformly on X to f . Then
f ∈ Lp(X,µ) and the sequence {fn} converges in Lp to f .

Theorem 3.61. The functions {eınθ : n ∈ Z} form an orthonormal basis for
L2[0, 2π].

Proof. A routine calculation shows that {eınθ : n ∈ Z} is an orthonormal set, so by
the Basis Theorem it’s just a matter of showing that

∨
{eınθ : n ∈ Z} = L2[0, 2π]. Let

f be a continuous function on [0, 2π]. By the Weierstrass Approximation Theorem,
the function f ◦ γ−1 is the uniform limit of a sequence of polynomials pN(z, z). As
in the proof of that theorem, by letting z = eıθ = γ(θ), we may regard the pN as
polynomials in θ; then f is a uniform limit of polynomials in θ. But by definition,
pN(θ) ∈ span{eınθ : n ∈ Z}, proving that the set of continuous functions on [0, 2π] is
the uniform closure of

span{eınθ : n ∈ Z}.

It follows from Lemma 3.60 that span{eınθ : n ∈ Z} is L2-dense in C[0, 2π], so that
we have

C[0, 2π] ⊂
∨

{eınθ : n ∈ Z} ⊂ L2[0, 2π].

One can show—though it involves some work—that C[0, 2π] is dense in L2[0, 2π].
The conclusion follows immediately.

Remark 3.62. That C[0, 2π] is the uniform closure of span{eınθ : n ∈ Z} can
be proven much more concisely using the Stone-Weierstrass theorem, which is a
generalization of the Weierstrass Approximation theorem.
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Put another way, Theorem 3.61 shows that {γn : n ∈ Z} is an orthonormal basis
for L2[0, 2π], where γ is the curve γ(θ) = eıθ, as before. Theorem 3.57 now tells us
that L2[0, 2π] ∼= l2(Z); in the notation of that theorem, we have

f̂(n) := U(f)(n) = ⟨f, γn⟩ = 1

2π

∫ 2π

0

f(θ)e−ınθ dθ

for each f ∈ L2[0, 2π]; we call this the n-th Fourier coefficient of f , and we call the
series representation

f =
∑
n∈Z

f̂(n)γn (11)

the Fourier series for f . Applying the Pythagorean theorem to (11) shows that

∑
n∈Z

|f̂(n)|2 = lim
N→∞

N∑
n=−N

|f̂(n)|2 < ∞,

which proves a the Riemann-Lebesgue lemma:

Corollary 3.63 (Riemann-Lebesgue). If f ∈ L2[0, 2π], then∫ 2π

0

f(θ)e−ınθ dθ → 0

as n → ±∞.

As discussed at the beginning of this section, L2[0, 2π] is, up to isomorphism,
L2[∂D]; so the map U : L2[0, 2π] → l2(Z) of Theorem 3.57, which maps f to its
sequence f̂ of Fourier coefficients, induces an isometric isomorphism from L2[∂D]
onto l2(Z); explicitly,

F : L2[∂D]
∼=−→ l2(Z)

is given by f 7→ U(f ◦ γ). That is,

F (f)(n) := U(f ◦ γ)(n)
= ⟨f ◦ γ, γn⟩

=
1

2π

∫ 2π

0

f(γ(θ))[γ(θ)]−n dθ (12)

=
1

2π

∫
∂D

f(z)z−n dz,
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for each f ∈ L2[∂D]. The map F is called the Fourier transform on the circle.
It is not the form of the Fourier transform with which students of analysis are of-
ten first made aquainted. This is because this version of the Fourier transform is
usually encountered in abstract harmonic analysis, not classical real analysis. In ab-
stract harmonic analysis one often works with locally compact abelian groups (LCA
groups)—topological groups for which the underlying topology is locally compact

and Hausdorff. Given an LCA group G, we define its dual group Ĝ to be the group
of continuous homomorphisms from G into the circle group T; these homomorphisms
are called characters. For any f ∈ L1(G), we can define the Fourier transform

(Ff)(ξ) :=

∫
G

f(x)ξ(x) dµ(x), (13)

where µ is a measure on the group G, called the Haar measure. If one takes G to
be R with Lebesgue measure, then this abstract Fourier transform is just the usual
Fourier transform on L1(R); so this is indeed a true generalization. Now what if we
take G = T? The characters of T are of the form x 7→ xn for n ∈ Z, and the Haar
measure on T is

µ(S) =
1

2π

[
m
(
γ−1(S)

)]
,

where m is Lebesgue measure. In light of these observations, we see that when we
take G = T, definition (13) is equivalent to (12). Thus, the Fourier transform on
the circle and the usual Fourier transform on R are just two instances of the same
object.

3.15 External Direct Sums

Given a collection {Hi}i∈I of Hilbert spaces, we can consider their Cartesian product∏
i∈I Hi. Defining addition and scalar multiplication coordinatewise on

∏
i∈I Hi—

that is, by the formulas

α{xi} = {αxi}, {xi}+ {yi} = {xi + yi}

—makes
∏

i∈I Hi into a vector space. We define

∥{xi}∥2 =

[∑
i∈I

∥xi∥2Hi

] 1
2

, (14)

and we define the external direct sum of the Hi’s, denoted
⊕

i∈I Hi, to be{
{xi} ∈

∏
i∈I

Hi : ∥{xi}∥2 < ∞
}
;
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one can verify that this is a vector subspace of
∏

i∈I Hi—indeed, it’s a matter of
showing that (14) satisfies the triangle inequality, which is standard Lp theory. We
can define an inner product on

⊕
i∈I Hi by〈

{xi}, {yi}
〉
=

∑
i∈I

⟨xi, yi⟩Hi
. (15)

The sum on the right hand side of equation (15) converges absolutely, since by the
Cauchy-Schwarz inequality and Hölder’s inequality,∑

i∈I

|⟨xi, yi⟩Hi
| ≤

∑
i∈I

∥xi∥∥yi∥

≤ ∥{xi}∥2∥{yi}∥2.

Thus (15) gives a well-defined function, and it is not hard to verify that it satisfies
the criteria for being an inner product. The norm determined by this inner product
is of course given by (14).

Theorem 3.64. With the inner product defined in (15),
⊕

i∈I Hi is a Hilbert space.

Proof. It remains only to show that
⊕

i∈I Hi is complete with respect to the norm
determined by the inner product. Let {xn

i }, n = 1, 2, . . . be a Cauchy sequence in⊕
i∈I Hi. Then it is easy to see that for each fixed i, the sequence {xn

i }∞n=1 is a
Cauchy sequence in Hi, which therefore converges to some xi ∈ Hi. For any finite
subset F ⊂ I and any fixed n ∈ N, we have∑

i∈F

∥xn
i − xi∥2 = lim

m→∞

∑
i∈F

∥xn
i − xm

i ∥2

= lim sup
m

∑
i∈F

∥xn
i − xm

i ∥2

≤ lim sup
m

∥{xn
i } − {xm

i }∥22; (16)

the right hand side of (16) is finite because {xm
i }∞m=1, being a Cauchy sequence, is

bounded. Taking the supremum over all finite F ⊂ I in (16) yields

∥{xn
i } − {xi}∥22 ≤ lim sup

m
∥{xn

i } − {xm
i }∥22, (17)

which shows that {xn
i − xi} ∈

⊕
i∈I Hi. It follows that {xi} ∈

⊕
i∈I Hi, for

{xi} = {xn
i } − {xn

i − xi} ∈
⊕
i∈I

Hi.
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Taking the limit superior over n in (17) yields

lim sup
n

∥{xn
i } − {xi}∥22 ≤ lim sup

n

(
lim sup

m
∥{xn

i } − {xm
i }∥22

)
≤ lim sup

m,n
∥{xn

i } − {xm
i }∥22 (18)

→ 0,

since {xn
i } is Cauchy. Note that we’ve invoked Theorem 1.11 in (18). We’ve shown

that {xn
i } converges to {xi}, which completes the proof.

Recall that the internal direct sum
⊕int

i∈I Mi of a collection {Mi}i∈I of mutually
orthogonal subspaces of H was defined to be the subspace of summable elements of∑

i∈I Mi. Recall, as well, from 3.31 that {xi} is summable if and only if
∑

i∈I ∥xi∥2 <
∞.

Theorem 3.65. Let {Mi}i∈I be an orthogonal family of closed subspaces of H , so
that each Mi may be regarded as a Hilbert space with the inner product inherited
from H . If {Mi}i∈I is an orthogonal family of subspaces of H , then

⊕
i∈I

Mi
∼=

int⊕
i∈I

Mi. (19)

Proof. Assume that {Mi}i∈I is an orthogonal family and let ϕ :
⊕

i∈I Mi →
⊕int

i∈I Mi

be the map

{xi}i∈I 7→
∑
i∈I

xi.

By the Pythagorean theorem we have

∥ϕ({xi})∥2 =
∥∥∥∑

i∈I

xi

∥∥∥2

=
∑
i∈I

∥xi∥2 = ∥{xi}∥22,

so that ϕ is an isometry. Now let x ∈
⊕int

i∈I Mi. By Theorem 3.39, {Mi}i∈I being an
orthogonal family means that x can be written uniquely in the form

∑
i∈I xi, with

xi ∈ Mi. Moreover, {xi} is summable to x by definition, and hence {xi} ∈
⊕

i∈I Mi,
by Theorem 3.31. Thus we have x = ϕ({xi}), and therefore ϕ is surjective.

Exercise 3.66. Find counterexample showing the converse is false.
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