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Abstract

In this expository thesis we describe the Bochner integral for functions

taking values in a separable Banach space, and we describe how a number

of standard definitions and results in real analysis can be extended for these

functions, with an emphasis on Hilbert-space-valued functions. We then

present a partial vector-valued version of a classical theorem on singular

integrals.
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1 Introduction

We begin our exposition by describing the Bochner integral for functions

landing in a separable Banach space. This integral was first introduced by

Salomon Bochner in his 1933 paper Integration von Functionen [2]. It is a

generalization of the Lebesgue integral. After we have described the Bochner

integral, we discuss how it can be used to extend a few basic results in real

analysis to the vector-valued setting. We then attempt to extend a result in

singular integral theory to this setting.

We begin the first section by discussing the space of integrable functions

landing in a Banach space. We show that the simple functions are dense in

this space, and use this fact to define the Bochner integral. We show how

basic measure-theoretic results—such as can be found in Folland [5]—extend

easily to the vector-valued setting. Having established these basic facts,

we come to our first application of the Bochner integral: a vector-valued

version of the Dominated Convergence Theorem. Recall that the Dominated

Convergence Theorem for the Lebesgue integral states the following:

Theorem 1.1. Let {fn} be a sequence of integrable functions converging to

f almost everywhere. Suppose further that there is a nonnegative integrable

function g such that all of the fn’s are bounded almost everywhere by g.

Then f is integrable, and
∫
f = lim

∫
fn.

The version that we shall prove for the Bochner integral uses this scalar-

valued version, together with the important property of the Bochner integral

that ‖
∫
f‖ ≤

∫
‖f‖. We conclude the first section by showing that linear

operators can be pulled through the Bochner integral.

In the second section we focus primarily on functions that land in a

separable Hilbert space. We discuss the notion of weak measurability for

these functions, and how this relates to the usual notion of measurability

(which is that preimages of measurable sets are measurable). We also discuss

weak measurability of operator-valued functions.

We then turn to the Lp spaces for vector-valued functions, and describe
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the triangle (Minkowski) and Hölder inequalities in this context. Recall the

scalar-valued versions:

Theorem 1.2 (Minkowski’s inequality). If f, g ∈ Lp(X,C), 1 ≤ p ≤ ∞,

then

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Theorem 1.3 (Hölder’s inequality). Suppose 1 ≤ p ≤ ∞, where p and q are

conjugate exponents (that is, 1/p + 1/q = 1 when 1 < p < ∞, and p = 1

when q =∞). If f and g are measurable functions from X to C, then

‖fg‖1 ≤ ‖f‖p‖g‖q.

The vector-valued versions are proven using the scalar-valued results. Hölder’s

inequality will be useful in showing that convolution is well-defined.

Continuing our discussion of vector-valued functions, we prove Fubini’s

theorem in the context of the Bochner integral and Hilbert-space-valued func-

tions. For scalar-valued functions, Fubini’s theorem is as follows:

Theorem 1.4 (The Fubini Theorem). Let (X,M, µ) and (Y,N , ν) be σ-

finite measure spaces, and let f : X × Y → C be in L1(X × Y ). Then

g(x) =

∫
Y

f(x, y) dy ∈ L1(X),

h(y) =

∫
X

f(x, y) dx ∈ L1(Y ),

and ∫
X×Y

f dµ× ν =

∫
X

g(x) dµ =

∫
Y

h(y) dν.

The proof of the vector-valued version makes use of the notion of weak mea-

surability.

We conclude Chapter 2 by discussing convolution of a Hilbert-space-

valued function with an operator-valued kernel, and showing that the re-

sulting function is continuous. We lead up to this with a discussion of the
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translation- and reflection-invariance of the Bochner integral. We mention in

passing that with the Bochner integral, one may define the Fourier transform

of a function landing in a separable Hilbert space.

In the latter half of the thesis we move toward trying to prove a vector-

valued version of a classical theorem on singular integrals. There are a few

important results that are needed for this major theorem; we devote the third

section of the thesis to these results.

The first of these results is the Calderón-Zygmund lemma. It says that

for a nonnegative function f , we can partition Rn by dyadic cubes into a

closed set F on which f is essentially bounded by α, and its complement

F c =
⋃
Qk, and the average value of f on each cube Qk ⊂ F c is bounded

below by α and above by 2nα. This was first proven in 1952 in Calderón and

Zygmund’s paper On the existence of certain singular integrals [3]. For its

proof we follow the one presented in I.3 of Stein [10], filling in certain details.

The second result included for our discussion of the singular integral the-

orem is a special case of the Marcinkiewicz interpolation theorem. This

theorem was discovered by Józef Marcinkiewicz in 1939. The simplified spe-

cial case we discuss is the one given in I.4 of Stein [10]. We repeat what

is presented there in just slightly greater detail, including this primarily for

convenient reference. We precede the theorem with some useful terminology.

The third and last of these results is a duality theorem for the Lp space

of vector-valued functions. This theorem we take from Grafakos [6]. The

analogous scalar-valued result is as follows:

Proposition 1.5. Suppose that p and q are conjugate exponents, and 1 ≤
p ≤ ∞. For f ∈ Lp(Rn,C) we have

‖f‖p = sup
{∣∣∣ ∫ fg

∣∣∣ : g ∈ Lq(Rn,C) with ‖g‖q = 1
}
.

This is a standard result in real analysis, and a proof can be found in Folland

[5], p. 188, for example. In the case of scalar-valued functions, a stronger

statement can be made:
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Proposition 1.6. Let p and q be conjugate exponents. Suppose that f :

X → C is a measurable function on a σ-finite measure space, such that fg is

integrable for every simple function g : X → C supported on a set of finite

measure. Suppose further that

Mp(f) = sup
{∣∣∣ ∫ fg

∣∣∣ : g is simple with finite support, and ‖g‖q = 1
}

is finite. Then f ∈ Lp(X) with ‖f‖p = Mp(f).

A proof of this result can also be found in Folland (p. 189). A vector-valued

version of Proposition 1.6 would be useful for our purposes, but all I have

been able to find is the vector-valued version of Proposition 1.5 presented

in Grafakos, and it may well be that the stronger result is unique to the

scalar-valued setting.

In the final section of this thesis we attempt to give an application of the

Bochner integral to the theory of singular integrals. Specifically, we attempt

to give a vector-valued version of the following theorem from Stein:

Theorem 1.7 (Theorem from Singular Integrals [10], p. 29 and pp. 34–35).

Let K ∈ L2(Rn,C). Suppose that

(i) The Fourier transform of K is essentially bounded, by B say.

(ii) ∫
|x|≥2|y|

|K(x− y)−K(x)| dx ≤ B, |y| > 0.

For f ∈ L1(Rn,C) ∩ Lp(Rn,C), 1 < p <∞, set

Tf(x) =

∫
Rn

K(x− y)f(y) dy. (1)

Then there exists a constant Ap, depending only on B, p, and n, such that

‖Tf‖p ≤ Ap‖f‖p. (2)

One can thus extend T to all of Lp by continuity.
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Equation (1) defines T as a convolution operator on a dense subspace of

Lp, namely L1 ∩ Lp. In our version we assume that T is already known to

be some bounded linear operator from L2(Rn,H1) to L2(Rn,H2), where H1

and H2 are separable Hilbert spaces, and that T is given by convolution on

a different dense subset of Lp, namely the bounded, compactly supported

functions.

Assumption (i) is used to show that (2) holds when p = 2. In the vector-

valued version that we present, we shall simply assume (2) for p = 2 from

the outset. Assumption (ii) expresses the singularity of K at the origin.

The techniques employed in Singular Integrals carry over to the vector-

valued setting for the 1 < p < 2 case. The Calderón-Zygmund lemma and

the interpolation theorem given in the preceding section are both employed.

But the techniques for proving the 2 < p < ∞ case do not carry over so

nicely. For this we introduce some fairly strong hypotheses.

The reader is expected to have some familiarity with real analysis—a

reasonable familiarity with the material contained in the first five sections of

Folland [5], for example. A knowledge of the elementary properties of Hilbert

and Banach spaces, and of linear operators on these spaces, is also assumed;

the contents of the first three sections of Conway [4] would more than suffice.

Throughout this thesis we have attempted to minimize terseness, filling in

minor details in arguments taken from Stein [10] and Grafakos [6], with the

hope that the reader will find our presentation perspicuous yet engaging.

2 The Bochner Integral

2.1 Preliminaries

We begin by introducing the Bochner integral—we follow exercise 16 on

p. 156 of Folland [5] for this. In order to define this integral we need a few

definitions. In what follows, for any topological space X, BX denotes the

Borel σ-algebra on X. Let (X,M, µ) be a measure space, and let Y be a
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separable Banach space. For convenience, let

LY = {f : X → Y : f is (M,BY )-measurable}.

Since y 7→ ‖y‖ is continuous, it is (BY ,BR)-measurable, and hence for any

f ∈ LY , the composition x 7→ ‖f(x)‖ is (M,BR)-measurable. We define

‖f‖1 =

∫
‖f(x)‖ dµ(x) (3)

and we say that f ∈ LY is integrable if the right-hand-side of (3) is finite.

We also set

L1(X,Y ) = {f : X → Y : f is integrable}.

Proposition 2.1. LY is a vector space which contains L1(X,Y ) as a sub-

space. Moreover, ‖ · ‖1 is a seminorm on L1(X,Y ) that becomes a norm if

we identify functions that are equal almost everywhere.

Proof. Since LY is a subset of the vector space Y X , to show that it is a

vector space it suffices to show that it is closed under addition and scalar

multiplication. Let f, g ∈ LY and define F1 : X → Y × Y by

F1(x) = (f(x), g(x)),

and φ : Y × Y → Y by

φ(y1, y2) = y1 + y2.

So f + g = φ ◦ F1. If π1 and π2 are the coordinate maps from Y ×Y to Y ,

then

π1 ◦ F1 = f and π2 ◦ F1 = g,

so π1 ◦ F1 and π2 ◦ F1 are (M,BY )-measurable. It follows from a result in

measure theory (see Folland [5], p. 44) that F1 is (M,BY ⊗BY )-measurable,

where BY ⊗ BY denotes the product σ-algebra on Y × Y . Since Y is

separable, we have—by another standard result ([5], p. 23)—that

BY ⊗ BY = BY ×Y .
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Hence, F1 is (M,BY ×Y )-measurable. Since φ is continuous, it is (BY ×Y ,BY )-

measurable, so we conclude that f +g = φ◦F1 is (M,BY )-measurable. This

proves that LY is closed under addition.

Now let f ∈ LY and α ∈ F, where F = R or C. Define F2 : X → F× Y

by

F2(x) = (α, f(x)),

and ψ : F× Y → Y by

ψ(λ, y) = λy.

Let π1, π2 denote the coordinate maps on F × Y . Since π1(x) = α for all

x ∈ X, we have for any E ∈ BF that

(π1 ◦ F2)−1(E) =

{
∅ if α /∈ E
X if α ∈ E,

and therefore π1 ◦ F2 is (M,BF)-measurable. Moreover, π2 ◦ F2 = f is

(M,BY )-measurable. Thus π1 ◦ F2 and π2 ◦ F2 are both measurable, and

therefore F2 is (M,BF ⊗ BY )-measurable. Since Y and F are separable,

BF ⊗ BY = BF×Y ,

and hence F2 is (M,BF×Y )-measurable. Since ψ is (BF×Y ,BY )-measurable

(by virtue of its being continuous), we conclude that αf = ψ◦F2 is (M,BY )-

measurable. Thus we have shown that LY is closed under scalar multiplica-

tion.

We now show that L1(X,Y ) is a subspace of LY , and that ‖ · ‖1 is a

seminorm on L1(X,Y ) that becomes a norm if we identify functions in LY

that are equal almost everywhere. Let f, g ∈ L1(X,Y ) and α ∈ F. Then

since ‖f(x) + g(x)‖ ≤ ‖f(x)‖+ ‖g(x)‖ for each x, we have

‖f+g‖1 =

∫
X

‖f(x)+g(x)‖ dx ≤
∫
X

‖f(x)‖ dx+

∫
X

‖g(x)‖ dx = ‖f‖1+‖g‖1.

Also, ‖(αf)(x)‖ = ‖αf(x)‖ = |α|‖f(x)‖, so

‖αf‖1 =

∫
X

‖(αf)(x)‖ dx = |α|
∫
X

‖f(x)‖ dx = |α|‖f‖1.
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This shows that ‖ · ‖ is a seminorm on L1(X,Y ) and that L1(X,Y ) is a

subspace of LY . If ‖f‖1 =
∫
X
‖f‖ dx = 0, then since ‖f‖ is nonnegative and

measurable, ‖f‖ = 0 a.e., and hence f = 0 a.e. Thus, if we identify functions

on LY that are equal a.e., ‖ · ‖1 becomes a norm on L1(X,Y ).

In analogy with the usual notion of scalar-valued simple functions, we

now define simple functions more generally to be maps φ : X → Y of the

form

φ(x) =
m∑
j=1

χEj
(x)yj,

where m ∈ N, yj ∈ Y , Ej ∈ M, and µ(Ej) <∞. For convenience we let FY

denote the set of simple functions. Any simple function φ can be written in

the form
∑m

i=1 yiχφ−1(yi), where {y1, . . . , ym} are all the nonzero elements in

the range of φ. We call this the standard representation of φ. The standard

representation gives a unique way of writing φ as a finite linear combination

of characteristic functions of disjoint sets, with one characteristic function

for each nonzero element in the range of φ.

Proposition 2.2. FY is a subspace of L1(X,Y ).

Proof. We start by showing that FY ⊂ LY . Let φ = χEy, where y ∈ Y and

E ∈ M. Elements of FY are finite sums of functions of this form, and we

have already shown that the set of (M,BY )-measurable functions is closed

under addition (of a finite number of summands), so to show that FY ⊂ LY

it suffices to show that φ is (M,BY )-measurable. For any F ∈ BY we have

φ−1(F ) =


X if y ∈ F and 0 ∈ F
E if y ∈ F and 0 /∈ F
Ec if y /∈ F and 0 ∈ F
∅ if y /∈ F and 0 /∈ F.

Therefore, φ−1(F ) ∈ M for each F ∈ BY , so φ is (M,BY )-measurable, and

hence FY ⊂ LY . Moreover, FY is clearly closed under addition and scalar

multiplication, so FY is a subspace of LY .
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To see that FY ⊂ L1(X,Y ), let φ =
∑m

j=1 χEj
yj ∈ FY . Then ‖φ(x)‖ =∑m

j=1 ‖yj‖χEj
(x), and hence

‖φ‖1 =

∫
X

m∑
j=1

‖yj‖χEj
(x) dx =

m∑
j=1

‖yj‖µ(Ej).

Thus φ ∈ L1(X,Y ), and since φ ∈ FY was arbitrary, this shows that FY ⊂
L1(X,Y ).

Lemma 2.3. For any normed space X, and j ∈ N with j > 1, if ‖x− y‖ ≤
1
j
‖y‖, then ‖y‖ ≤ j

j−1
‖x‖ (and hence ‖x− y‖ ≤ 1

j−1
‖x‖).

Proof. Since ‖x − y‖ ≤ 1
j
‖y‖, we have ‖y‖ − ‖x‖ ≤ 1

j
‖y‖, which implies

(1− 1
j
)‖y‖ ≤ ‖x‖. This can be expressed as ‖y‖ ≤ j

j−1
‖x‖.

Lemma 2.4. Let {yn}∞1 be a countable dense set in Y . For each j ∈ N, let

Bn,j = {y ∈ Y : ‖y − yn‖ < 1
j
‖yn‖}. Then for each j,

⋃∞
n=1 Bn,j ⊃ Y \ {0}.

Proof. Let y 6= 0, j ∈ N. Since {yn}∞1 is dense in Y , we have

‖y − yn‖ ≤
1

j + 1
‖y‖

for some n. By Lemma 2.3, this implies

‖y − yn‖ ≤
1

j
‖yn‖,

which means that y ∈ Bn,j.

Theorem 2.5. If f ∈ L1(X,Y ), there is a sequence {φn} ⊂ FY which

converges to f in L1(X,Y ) and a.e..

Proof. With the notation in Lemma 2.4, let An,j = Bn,j \
⋃n−1
m=1Bm,j and

En,j = f−1(An,j), and let gj =
∑∞

n=1 ynχEn,j
. Note that the En,j’s are dis-

joint, since the An,j’s are. Moreover, it follows from Lemma 2.4 that

X =
∞⋃
n=1

En,j ∪ f−1{0}, (4)
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for if f(x) 6= 0 then f(x) ∈
⋃∞
n=1Bn,j =

⋃∞
n=1An,j, whence x ∈ En,j for some

n. The union in (4) is disjoint, because 0 /∈
⋃∞
n=1Bn,j =

⋃∞
n=1An,j, and

therefore if f(x) = 0 then x /∈ En,j for any n. Lastly, we note that since the

Bn,j sets are open balls in Y , they are in BY , and hence the An,j sets are in

BY as well, and since f is (M,BY )-measurable this implies that the En,j’s

are in M.

Now, if x ∈ En,j and j > 1, we have

‖f(x)− yn‖ <
1

j
‖yn‖, (5)

and hence by Lemma 2.3,

‖yn‖ <
j

j − 1
‖f(x)‖. (6)

Since

gj(x) =

{
yn if x ∈ En,j
0 if x ∈ f−1{0},

we see that ‖gj(x)‖ ≤ j
j−1
‖f(x)‖ for all x ∈ X, and hence ‖gj‖1 ≤ j

j−1
‖f‖1.

Also, (5) and (6) give us ‖f(x)−yn‖ < 1
j−1
‖f(x)‖ for x ∈ En,j, which implies

that

‖f(x)− gj(x)‖ ≤ 1

j − 1
‖f(x)‖

for all x ∈ X. This in turn gives us

‖f − gj‖1 ≤
1

j − 1
‖f‖1. (7)

We now observe that ‖gj(x)‖ =
∑∞

n=1 ‖yn‖χEn,j
(x), and hence

‖gj‖1 =

∫
X

‖gj(x)‖ dx =

∫
X

∞∑
n=1

‖yn‖χEn,j
(x) dx =

∞∑
n=1

∫
X

‖yn‖χEn,j
(x) dx

by the Monotone Convergence Theorem. Therefore,

‖gj‖1 =
∞∑
n=1

‖yn‖µ(En,j), (8)
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which in particular shows that µ(En,j) < ∞ for each n, j. Now since gj ∈
L1(X,Y ) for j > 1, we can truncate the sum in (8) to make its tail as small

as we like. In other words, for j > 1 there exists Nj such that

∞∑
n=Nj+1

‖yn‖µ(En,j) <
1

j
.

Now let N1 = 1 and define φj =
∑Nj

n=1 ynχEn,j
. Notice that

gj − φj =
∞∑

n=Nj+1

ynχEn,j
,

and hence

‖gj − φj‖1 =
∞∑

n=Nj+1

‖yn‖µ(En,j) <
1

j
(9)

when j > 1. Now since

‖f − φj‖1 ≤ ‖f − gj‖1 + ‖gj − φj‖1 <
1

j − 1
‖f‖1 +

1

j

when j > 1, we see that ‖f−φj‖1 → 0 as j →∞. Seen another way, this says

that the nonnegative functions ‖f(x)−φj(x)‖ converge to 0 in L1(X,R). This

implies, by a fact from real analysis (see Bartle [1], pp. 69–70, for example),

that there is a subsequence ‖f(x)−ψj(x)‖ which converges to 0 in L1(X,R)

and almost everywhere. In other words, ψj → f in L1(X,Y ) and a.e..

2.2 The Integral

Theorem 2.6. There is a unique linear map
∫

: L1(X,Y )→ Y such that:

(i)
∫
yχE = µ(E)y for y ∈ Y and E ∈M (with µ(E) <∞), and

(ii) ‖
∫
f‖ ≤ ‖f‖1.

Proof. We first define
∫

on FY by
∫ ∑n

i=1 yiχEi
=
∑n

i=1 yiµ(Ei). This is

clearly linear on FY . It is also well-defined, i.e., independent of representa-

tion. The proof of this fact is identical to the proof for scalar-valued simple
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functions, so we shall omit it, referring the reader to pp. 51–52 of Stein &

Shakarchi [11], for example. Therefore, in what follows we will work exclu-

sively with standard representations of simple functions.

Given φ =
∑n

j=1 yjχEj
∈ FY , we have

‖φ(x)‖ =
∥∥∥ n∑
j=1

yjχEj
(x)
∥∥∥ =

n∑
j=1

‖yj‖χEj
(x)

for each x ∈ X, and hence

‖φ‖1 =

∫
X

‖φ‖ dx =
n∑
j=1

‖yj‖µ(Ej).

Thus, ∥∥∥∫
X

φ dx
∥∥∥ ≤ n∑

j=1

‖yj‖µ(Ej) = ‖φ‖1. (10)

Now suppose we are given f ∈ L1(X,Y ). By Theorem 2.5, there is a

sequence {φn} ⊂ FY such that ‖φn − f‖1 → 0. Thus {φn} is Cauchy in

L1(X,Y ), and hence∥∥∥∫ φn −
∫
φm

∥∥∥ =
∥∥∥∫ (φn − φm)

∥∥∥ ≤ ‖φn − φm‖1 → 0

as m,n → ∞. Thus {
∫
φn} is Cauchy in Y , and since Y is complete this

means that {
∫
φn} converges. Define

∫
f to be its limit. Then

∫
is well-

defined on L1(X,Y ), for suppose that {ψn} is another sequence in FY such

that ψn → f , and let ε > 0. There exists an N such that n ≥ N implies

(i) ‖
∫
φn −

∫
f‖ < ε

2
,

(ii) ‖φn − f‖1 <
ε
4
,

(iii) ‖ψn − f‖1 <
ε
4
.
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Thus for n ≥ N ,∥∥∥∫ ψn −
∫
f
∥∥∥ ≤ ∥∥∥∫ ψn −

∫
φn

∥∥∥+
∥∥∥∫ φn −

∫
f
∥∥∥

≤ ‖ψn − φn‖1 +
∥∥∥∫ φn −

∫
f
∥∥∥

by (10). Using the triangle inequality again,∥∥∥∫ ψn −
∫
f
∥∥∥ ≤ ‖ψn − f‖1 + ‖f − φn‖1 +

∥∥∥∫ φn −
∫
f
∥∥∥

<
ε

4
+
ε

4
+
ε

2
.

Thus
∫
ψn →

∫
f in Y , so the function

∫
is well-defined on L1(X,Y ). It

is easy to see that
∫

is linear on L1(X,Y ), so it remains only to show that

‖
∫
f‖ ≤ ‖f‖1, and to verify the uniqueness statement. Given f ∈ L1(X,Y ),

f = limφn for a sequence {φn} ⊂ FY , so∥∥∥∫ f
∥∥∥ =

∥∥∥ lim

∫
φn

∥∥∥ = lim
∥∥∥∫ φn

∥∥∥ ≤ lim ‖φn‖1 = ‖f‖1.

Thus ‖
∫
f‖ ≤ ‖f‖1 for all f ∈ L1(X,Y ).

Now, to verify the uniqueness statement, suppose that Ψ : L1(X,Y ) →
Y is another linear map such that

(i) Ψ(yχE) = yµ(E) for y ∈ Y , E ∈M.

(ii) ‖Ψf‖ ≤ ‖f‖1 for all f ∈ L1(X,Y ).

Let f ∈ L1(X,Y ); then f = limφn for a sequence {φn} ⊂ FY , and since Ψ

is continuous by (ii),

Ψf = Ψ(limφn) = lim Ψφn.

Now for any φ =
∑n

i=1 yiχEi
∈ FY we have

Ψφ = Ψ
( n∑
i=1

yiχEi

)
=

n∑
i=1

Ψ(yiχEi
) =

n∑
i=1

yiµ(Ei),
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by (i). Then by the definition of
∫

, this is equal to∫ n∑
i=1

yiχEi
=

∫
φ,

which shows that
∫

and Ψ agree on simple functions. Therefore, Ψf =

lim Ψφn = lim
∫
φn =

∫
f , and we conclude that Ψ =

∫
on L1(X,Y ),

proving the uniqueness of the function
∫

.

The function
∫

: L1(X,Y ) → Y defined in Theorem 2.6 is called the

Bochner integral. We will prove a version of the Dominated Convergence

Theorem for L1(X,Y ) functions, but we first verify that certain standard

measure-theoretic results still hold for these functions.

Theorem 2.7. If fn converges pointwise to f , and each fn ∈ LY , then

f ∈ LY .

Proof. Since Y is a separable metric space, a countable collection of open

balls is a base for its topology, and it follows that BY is generated by open

balls. Thus, it suffices to show that the preimage of each open ball in Y

under f is inM. To do this, we first note that constant functions are in LY ,

for if F (x) = y for all x ∈ X, then for each E ∈ BY ,

F−1(E) =

{
X if y ∈ E
∅ if y /∈ E,

and thus F is (M,BY )-measurable. We now recall from Proposition 2.1

that LY is a vector space, and hence fn(x) − y ∈ LY for each n. Since the

norm ‖ · ‖ is continuous, ‖fn(x)− y‖ is (M,BR)-measurable for each n, and

‖fn(x) − y‖ converges to ‖f(x) − y‖ for each x. By a standard result (see

Bartle [1], p. 12), we have that ‖f(x) − y‖ is (M,BR)-measurable. Thus, if

we define gy by gy(x) = ‖f(x)− y‖, then g−1
y

(
B(0, δ)

)
∈ M for each y ∈ Y

and δ > 0. But

g−1
y

(
B(0, δ)

)
= {x : ‖f(x)− y‖ < δ} = f−1

(
B(y, δ)

)
.
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We have thus shown that the preimage of any open ball in Y is in M, as

desired.

Corollary 2.8. Suppose that µ is a complete measure on M. We have the

following:

(i) if f is (M,BY )-measurable and f = g µ-a.e., then g is (M,BY )-

measurable.

(ii) if fn is (M,BY )-measurable for each n and fn → f µ-a.e., then f is

(M,BY )-measurable.

Proof. Suppose that f = g on N c for some null set N . Then for each E ∈ BY ,

g−1(E) ∩N c = f−1(E) ∩N c ∈M.

Hence,

g−1(E) = g−1(E) ∩ (N ∪N c)

= (g−1(E) ∩N)︸ ︷︷ ︸
in M since µ is complete

∪ (g−1(E) ∩N c).

Thus g is (M,BY )-measurable. This proves (i).

Suppose now that {fn} is a sequence of measurable functions which con-

verges to f on N c, where N is a null set. We define functions Fn and F

by

Fn(x) = χX\N(x)fn(x) and F (x) = χX\N(x)f(x).

Now Fn is measurable for each n, because for any E ∈ BY ,

F−1
n (E) =

{
f−1
n (E) ∪N if 0 ∈ E
f−1
n (E) if 0 /∈ E.

Moreover, it is clear that Fn(x)→ F (x) for each x ∈ X, so by Theorem 2.7,

F is measurable. Since f = F a.e., (i) gives us that f is measurable.
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Proposition 2.9. If µ is a measure on a measurable space (X,M), and µ

is its completion, then a statement P about functions on X is true µ-a.e. if

and only if it is true µ-a.e..

Proof. Suppose first that P is true µ-a.e.. This means that P is true on N c

for a null set N ∈M. By definition, N = E ∪F , where E ∈M and F ⊂ N0

for some N0 ∈ M such that µ(N0) = 0. Moreover, µ(E) ≡ µ(N) = 0. Now

since F ⊂ N0, we have N c
0 ⊂ F c, which implies Ec ∩N c

0 ⊂ Ec ∩ F c; in other

words, (E ∪ N0)c ⊂ N c. Thus P is true on (E ∪ N0)c, where E ∪ N0 ⊂ M,

and µ(E ∪N0) ≤ µ(E) + µ(N0) = 0; i.e., P is true µ-a.e.. Conversely, if P is

true µ-a.e., then P is true on N c, where N ∈M ⊂M, which means that P

is true µ-a.e..

In light of this proposition, we may, in speaking about a non-complete

measure µ, say that something holds a.e. without specifying µ-a.e. or µ-a.e..

Proposition 2.10. Given a measure space (X,M, µ) with completion

(X,M, µ), and an (M,BY )-measurable function f , there is an (M,BY )-

measurable function g which is equal to f a.e..

Proof. Clearly, χE is (M,BY )-measurable for each E ∈ M. By definition,

any such E can be written as F ∪ G, where F ∈ M and µ(G) = 0. Thus

χE = χF a.e., and χF is (M,BY )-measurable. It follows that the result

holds for (M,BY )-measurable simple functions. By Theorem 2.5, there is a

sequence {φn} of (M,BY )-measurable simple functions that converges a.e.

to f ; in other words, φn(x) → f(x) for each x ∈ N c, where N ∈ M. For

each φn, let ψn be a (M,BY )-measurable simple function which is equal to

φn on Ec
n, where En ∈M and µ(En) = 0. Letting

N ′ = N ∪
∞⋃
n=1

En and g(x) = lim
n→∞

χX\N ′(x)ψn(x),

we have

N ′ ∈M with µ(N ′) = 0,
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and

g = fχX\N ′ .

The functions χX\N ′(x)ψn(x) are (M,BY )-measurable, and therefore by The-

orem 2.7, g is (M,BY )-measurable. Since g = f a.e., we are done.

Theorem 2.11 (The Dominated Convergence Theorem). If {fn} is a se-

quence in L1(X,Y ) such that fn → f a.e., and there exists g ∈ L1(X,R)

such that ‖fn(x)‖ ≤ g(x) for all n and almost every x, then there exists a

function f ∗ in L1(X,Y ) such that
∫
fn →

∫
f ∗ and f = f ∗ a.e..

Proof. We treat the general case where µ may not be complete. The fn’s

are (M,BY )-measurable, and fn → f a.e.. Since M ⊂ M, the fn’s are

(M,BY )-measurable. Corollary 2.8 yields that f is (M,BY )-measurable.

By Proposition 2.10 there exists an (M,BY )-measurable function f ∗ which

is equal to f a.e.. If µ were complete to begin with then f would itself be

(M,BY )-measurable, and this step would be unnecessary.

Now for each n, there exists a null set En ∈ M such that ‖fn‖ ≤ g on

Ec
n. Let N0 =

⋃∞
n=1En. Since fn → f a.e. and f = f ∗ a.e., it follows that

fn → f ∗ on N c
1 for some null set N1 ∈M. Let N = N0 ∪N1; then

µ(N) = 0, fn → f ∗ on N c, and ‖fn‖ ≤ g on N c for all n.

It follows that ‖f ∗‖ ≤ g a.e., and therefore f ∗ is in L1(X,Y ). Now since∥∥∥∫ fn −
∫
f ∗
∥∥∥ =

∥∥∥∫ (fn − f ∗)
∥∥∥ ≤ ‖fn − f ∗‖1,

it suffices to show that ‖fn − f ∗‖1 → 0. We know that

‖fn(x)− f ∗(x)‖ → 0 for a.e. x,

and

‖fn(x)− f ∗(x)‖ ≤ ‖fn(x)‖+ ‖f ∗(x)‖ ≤ 2g(x) for a.e. x and for all n.
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Therefore, by the scalar-valued Dominated Convergence Theorem (see Fol-

land [5], p. 54, for example),∫
‖fn − f ∗‖ dx→

∫
0 dx = 0.

In other words, ‖fn − f ∗‖1 → 0.

For any normed vector spaces X and Y , we let B(X, Y ) denote the space

of bounded linear transformations from X to Y .

Theorem 2.12. If Z is a separable Banach space, T ∈ B(Y ,Z ), and

f ∈ L1(X,Y ), then T ◦ f ∈ L1(X,Z ) and
∫
T ◦ f = T (

∫
f).

Proof. T is continuous, so it is (BY ,BZ )-measurable, and since f is (M,BY )-

measurable we have that T ◦ f is (M,BZ )-measurable. Moreover, since T is

bounded, we have ‖(T ◦ f)(x)‖ = ‖T (f(x))‖ ≤ ‖T‖‖f(x)‖ for each x ∈ X.

Therefore,

‖T ◦ f‖1 =

∫
‖(T ◦ f)(x)‖ dx ≤ ‖T‖

∫
‖f(x)‖ dx = ‖T‖‖f‖1, (11)

so that T ◦ f ∈ L1(X,Z ).

Now observe that for any φ =
∑n

i=1 yiχEi
, we have T◦φ =

∑n
i=1(Tyi)χEi

∈
FZ , and hence∫

T ◦ φ =
n∑
i=1

µ(Ei)Tyi = T
( n∑
i=1

µ(Ei)yi

)
= T

(∫
φ
)
.

If {φn} is a sequence in FY such that ‖f − φn‖1 → 0, we see—using

(11)—that

‖T ◦ f − T ◦ φn‖1 = ‖T (f − φn)‖1 ≤ ‖T‖‖f − φn‖1 → 0.

Thus, {T ◦ φn} is a sequence in FZ such that ‖T ◦ f − T ◦ φn‖1 → 0, and

therefore∫
T ◦ f = lim

∫
T ◦ φn = lim T

(∫
φn

)
= T

(
lim

∫
φn

)
= T

(∫
f
)
.
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A special variant of this theorem occurs when T = ξ ∈ Y ∗. Then we

have

ξ
(∫

X

f(x) dx
)

=

∫
X

ξ(f(x)) dx,

where the integral on the left is the Bochner integral, but the integral on the

right is a Lebesgue integral. The proof is identical, except that after we’ve

established ‖ξ(f)− ξ(φn)‖1 → 0, we note that in particular this means that∫
ξ(φn)→

∫
ξ(f), where these are Lebesgue integrals.

We will make use of this variant in Section 3.3, and refer to it simply as

Theorem 2.12.
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3 The Vector-Valued Aspect

3.1 Weak measurability

Now that we have introduced the Bochner integral, we show how it can

be used to extend some of the standard theory to the context of vector-

valued functions. Let H be a separable Hilbert space. Given a measure

space (X,M, µ), a function f : X → H is called weakly measurable if for

each φ ∈ H , the map x 7→ 〈f(x), φ〉 is (M,BC)-measurable. Note that this

is different from the definition of measurability we saw before in the more

general Banach space setting, where a function was measurable if it was

(M,BH )-measurable. With the codomain of f being a separable Hilbert

space, the two definitions are equivalent, as we will now show.

Lemma 3.1. If f : X → H is weakly measurable then x 7→ ‖f(x)‖ is

(M,BR)-measurable.

Proof. Since H is separable, dim H = ℵ0. Let {ei}∞i=1 be a basis for H ; by

Parseval’s identity,

‖f(x)‖2 =
∞∑
i=1

|〈f(x), ei〉|2.

Since weak measurability means that x 7→ 〈f(x), ei〉 is measurable for each

i, it follows that x 7→
∑n

i=1 |〈f(x), ei〉|2 is (M,BR)-measurable for each n.

Since the pointwise limit of a sequence of measurable functions is measurable,

we have that x 7→ ‖f(x)‖2 is measurable, and therefore that x 7→ ‖f(x)‖ is

measurable.

Lemma 3.2. Constant functions are weakly measurable. Moreover, if f :

X → H and g : X → H are weakly measurable, and c ∈ C, then cf and

f + g are weakly measurable.

Proof. Given ψ ∈ H , x 7→ 〈ψ, φ〉 is (M,BC)-measurable for each φ ∈ H ,

since constant scalar-valued functions are measurable. Thus constant func-

tions are weakly measurable. If f is weakly measurable and c ∈ C, then
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the weak measurability of cf follows from the analogous property for scalar-

valued measurable functions, since 〈cf(x), φ〉 = c〈f(x), φ〉. If f and g are

weakly measurable, then the weak measurability of f + g again follows from

the analogous property for scalar-valued functions, since 〈f(x) + g(x), φ〉 =

〈f(x), φ〉+ 〈g(x), φ〉.

Proposition 3.3. The map f : X →H is (M,BH )-measurable if and only

if it is weakly measurable.

Proof. Suppose that f is (M,BH )-measurable. Since the inner-product

〈·, ·〉 : H ×H → C is continuous, its sections 〈·, φ〉 are continuous, and

are therefore (BH ,BC)-measurable. It follows that the composition x 7→
〈f(x), φ〉 is (M,BC)-measurable for each φ ∈H .

For the converse we apply the same technique used in Lemma 2.7. Since

H is separable it follows that BH is generated by open balls, and therefore

it suffices to show that the preimage of every open ball in H is in M. If f

is weakly measurable, it follows from the lemmas that gy(x) ≡ ‖f(x)− y‖ is

measurable for each y ∈H . Since

f−1
(
B(y, δ)

)
= {x : ‖f(x)− y‖ < δ} = g−1

y

(
B(0, δ)

)
,

we are done.

Now consider B(H1,H2), with the norm topology, where H1 and H2

are separable Hilbert spaces. A function K : X → B(H1,H2) is said to

be weakly measurable if K(x)φ is weakly measurable for each φ ∈ H1. To

be pedantic, this amounts to x 7→ 〈K(x)φ, ψ〉 being (M,BC)-measurable for

each φ ∈ H1 and each ψ ∈ H2. By Proposition 3.3 this is equivalent to

requiring that x 7→ K(x)φ be (M,BH2)-measurable for each φ ∈H1, and by

the continuity of the norm it implies that x 7→ ‖K(x)φ‖ is measurable for

each φ ∈H1.

Proposition 3.4. If K : X → B(H1,H2) is weakly measurable, then x 7→
‖K(x)‖ is measurable.
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Proof. Since H1 is separable, so is the closed unit ball B(0, 1) ⊂ H1, with

countable dense subset {ψi}∞1 . Now for any x, ‖K(x)‖ = sup‖φ‖≤1 ‖K(x)φ‖,
and since K(x) is continuous, this is the equal to supi ‖K(x)ψi‖. Since

x 7→ ‖K(x)ψi‖ is measurable for each i, x 7→ ‖K(x)‖ is measurable.

We note that K : X → B(H1,H2) being weakly measurable is not the

same as K being (M,BB(H1,H2))-measurable. However, the latter sense of

measurability implies the former. To see this, observe that for each φ ∈H1,

the map T 7→ Tφ is (BB(H1,H2),BH2)-measurable, because it is continuous,

being linear and bounded. Then x 7→ K(x)φ is just the composition

x 7→ K(x) 7→ K(x)φ,

so it is (M,BH2)-measurable. Thus if K is (M,BB(H1,H2))-measurable, it is

weakly measurable. I suspect the converse does not hold. At any rate, we

cannot imitate the technique used in Proposition 3.3, for B(H1,H2) may

not be separable, even when H1 and H2 are. For consider B(H ,H ), where

H = L2([0, 1]), the space of equivalence classes of complex-valued square-

integrable functions on [0, 1]; this space is separable (see Folland [5], p. 178).

For t ∈ (0, 1] and f ∈H , consider the multiplication operator

mt(f) = fχ[0,t].

For s, t ∈ (0, 1] with s < t, we have

‖mt −ms‖ = sup
‖f‖=1

‖(mt −ms)f‖

= sup
‖f‖=1

‖fχ[s,t]‖

= sup
‖f‖=1

(∫ t

s

|f(x)|2 dx
) 1

2

= 1,

since we can always find a function supported on [s, t] such that ‖f‖L2 = 1.

But {mt : t ∈ (0, 1]} is an uncountable subset of B(H ,H ). This shows
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that any dense subset of B(H ,H ) must be uncountable, and therefore

B(H ,H ) is not separable.

The following proposition will be useful later.

Proposition 3.5. If K : X → B(H1,H2) and f : X → H1 are weakly

measurable, then K(·)f(·) : X →H2 is weakly measurable.

Proof. We first observe that if f : X →H1 and g : X →H1 are weakly mea-

surable, then x 7→ 〈f(x), g(x)〉 is (M,BC)-measurable. To see this, observe

that by the polarization identity we have

〈f(x), g(x)〉 = 1
4

(
‖f(x) + g(x)‖2 − ‖f(x)− g(x)‖2

+ i‖f(x) + ig(x)‖2 − i‖f(x)− ig(x)‖2
)
,

and each of the four summands on the right-hand-side is measurable.

We now note that if K : X → B(H1,H2) is weakly measurable, then

so is K∗ : X → B(H2,H1), where K∗(x) is the adjoint of K(x). This is

because for any ψ ∈H1, φ ∈H2, and x ∈ X, we have

〈K∗(x)φ, ψ〉 = 〈ψ,K∗(x)φ〉 = 〈K(x)ψ, φ〉,

which is measurable because K is weakly measurable, and complex conjuga-

tion is measurable (being continuous).

Now K∗ being weakly measurable means, by definition, that K∗(x)φ is

weakly measurable for each φ ∈H2, whence, by what we first showed,

x 7→ 〈f(x), K∗(x)φ〉

is measurable for each φ ∈ H2. But 〈f(x), K∗(x)φ〉 = 〈K(x)f(x), φ〉, so we

have proven that K(x)f(x) is weakly measurable.

3.2 Vector-valued Lp-space

Let B be a Banach space. We define Lp(X,B) in analogy with the usual

definition, that is, with

‖f‖p =
(∫

X

‖f(x)‖pB dx
)1/p
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when 0 < p <∞, and

‖f‖∞ = ess supx∈X‖f(x)‖B.

We use Lp(X,B) and L∞(X,B) to denote the space of equivalence classes

of (M,BB)-measurable functions such that ‖f‖p < ∞ and ‖f‖∞ < ∞,

respectively. When 1 ≤ p ≤ ∞, ‖ · ‖p and ‖ · ‖∞ are norms on Lp(X,B)

and L∞(X,B) respectively—that scaling and nondegeneracy hold is obvious,

and the triangle inequality, or Minkowski’s inequality, follows from the scalar-

valued version:

Theorem 3.6 (Minkowski’s inequality). If f, g ∈ Lp(X,B), 1 ≤ p ≤ ∞,

then

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Proof. Since ‖f + g‖B ≤ ‖f‖B + ‖g‖B, we simply apply the scalar-valued

version to ‖f‖B + ‖g‖B. Thus,∥∥‖f + g‖B
∥∥
p
≤
∥∥‖f‖B + ‖g‖B

∥∥
p
≤
∥∥‖f‖B∥∥p +

∥∥‖g‖B∥∥p,
that is,

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

It is not hard to verify that the spaces Lp(X,B) and L∞(X,B) are

Banach spaces for 1 ≤ p ≤ ∞; the arguments are the same as for the scalar-

valued case, but with absolute value replaced by norm. This construction

works for any Banach space B, and in the remainder of this section we will

apply it to Hilbert space, as well as to the Banach space of linear operators

between two Hilbert spaces. We note in passing that the norm on L2(X,H )

is determined by the inner product

〈f, g〉 =

∫
X

〈f(x), g(x)〉 dx,

so that L2(X,H ) is a Hilbert space.

A vector-valued analogue of Hölder’s inequality follows directly from the

scalar-valued version:
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Theorem 3.7 (Hölder’s inequality). Suppose that 1 ≤ p ≤ q ≤ ∞ and that

q is conjugate to p (that is, 1/p+ 1/q = 1 when 1 < p <∞, and p = 1 when

q =∞). If K : X → B(H1,H2) and f : X →H1 are measurable, then

‖Kf‖1 ≤ ‖K‖p‖f‖q.

Proof. Proposition 3.5 implies that x 7→ ‖K(x)f(x)‖ is measurable. Apply-

ing the scalar-valued Hölder’s inequality to ‖K(x)‖op and ‖f(x)‖H1 yields

‖Kf‖1 ≡
∫
‖K(x)f(x)‖H2 dx ≤

∫
‖K(x)‖op‖f(x)‖H1 dx ≤ ‖K‖p‖f‖q,

as desired.

3.3 The Fubini theorem

Fubini’s theorem holds in this setting as well; we shall find it convenient

to first review some properties of sections and bounded linear functionals.

Recall that when we are given two sets X and Y , a subset E ⊂ X × Y , and

an element x ∈ X, we define the x-section of E—denoted Ex—by

Ex = {y ∈ Y : (x, y) ∈ E}.

We define the y-section Ey for y ∈ Y analogously. Moreover, for a function

f on X × Y , we define the x-section of f—denoted fx—by

fx(y) = f(x, y).

For y ∈ Y we define the y-section f y analogously. Given two measure spaces

(X,M, µ) and (Y,N , ν), we have the following:

Proposition 3.8. Given E ⊂M⊗N , all of its x-sections Ex are in N , and

all of its y-sections Ey are in M. Moreover, if f : X × Y → H is (M⊗
N ,BH )-measurable, then each of its x-sections fx is (N ,BH )-measurable,

and each of its y-sections f y is (M,BH )-measurable.
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The proof is easy and identical to that of the scalar-valued result; see

Folland [5], p. 65. Now let X be a Banach space, and let X ∗ be its dual.

Proposition 3.9. For each x 6= 0 in X , there exists ξ ∈ X ∗ such that

‖ξ‖ = 1 and ξ(x) = ‖x‖.

Proof. Take x 6= 0. It is a useful corollary of the Hahn-Banach theorem that

‖x‖ = sup{|u(x)| : u ∈X ∗ and ‖u‖ ≤ 1}.

Moreover, this supremum is attained, at v, say. Let ξ = v(x)
|v(x)|v; then ‖ξ‖ =

‖v‖ = 1, and

ξ(x) =
v(x)

|v(x)|
v(x) = |v(x)| = ‖x‖.

Corollary 3.10. If ξ(x) = ξ(y) for all ξ ∈X ∗, then x = y.

Proof. If x 6= y, select ξ so that

ξ(x− y) = ‖x− y‖.

Then ξ(x) 6= ξ(y).

Theorem 3.11 (The Fubini Theorem). Let H be a separable Hilbert space,

and suppose that (X,M, µ) and (Y,N , ν) are σ-finite measure spaces, and

that f : X × Y →H is in L1(X × Y,H ). Then

g(x) =

∫
Y

fx(y) dν ∈ L1(X,H ),

h(y) =

∫
X

f y(x) dµ ∈ L1(Y,H ),

and ∫
X×Y

f dµ× ν =

∫
X

g(x) dµ =

∫
Y

h(y) dν.

29



That is,∫
X×Y

f(x, y) dµ(x)× ν(y)

=

∫
X

∫
Y

f(x, y) dν(y) dµ(x) =

∫
Y

∫
X

f(x, y) dµ(x) dν(y).

Proof. Since f ∈ L1(X×Y,H ), it is (M⊗N ,BH )-measurable, which implies

that each of its sections is measurable. Moreover, ‖f‖ and each of its sections

is measurable. The Tonelli theorem applied to ‖f‖ shows that∫
Y

‖fx(y)‖ dν ∈ L1(X,C) and

∫
X

‖f y(x)‖ dµ ∈ L1(Y,C). (12)

Then

‖g(x)‖ =
∥∥∥∫

Y

fx(y) dν
∥∥∥ ≤ ∫

Y

‖fx(y)‖ dν, (13)

so the integral defining g(x) converges for a.e. x. Likewise,

‖h(x)‖ =
∥∥∥∫

X

f y(x) dµ
∥∥∥ ≤ ∫

X

‖f y(x)‖ dµ, (14)

so that the integral defining h(y) converges for a.e. y. In fact, if we knew

that g and h were measurable, then (12) together with (13) and (14) would

yield that g ∈ L1(X,H ) and h ∈ L1(Y,H ).

Let ξ ∈H ∗. By Theorem 2.12, ξ(f) ∈ L1(X×Y,C). Hence we may apply

the scalar-valued Fubini theorem to ξ(f) to obtain that [ξ(f)]x ∈ L1(Y,C)

for a.e. x ∈ X, and [ξ(f)]y ∈ L1(X,C) for a.e. y ∈ Y . Moreover, the a.e.-

defined functions γ(x) =
∫
Y

[ξ(f)]x(y) dν and η(y) =
∫
X

[ξ(f)]y(x) dµ are in

L1(X,C) and L1(Y,C) respectively, with∫
X×Y

ξ(f)(x, y) dµ× ν(x, y) =

∫
X

γ(x) dµ(x) =

∫
Y

η(y) dν(y). (15)

Note that by Theorem 2.12,

γ(x) =

∫
Y

[ξ(f)]x(y) dν =

∫
Y

ξ(f)(x, y) dν = ξ
(∫

Y

f(x, y) dν
)

= ξ(g(x)),
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and similarly, η(y) = ξ(
∫
X
f(x, y) dµ) = ξ(h(y)). Since γ and η are in L1,

they are, in particular, measurable. Since ξ ∈H ∗ was arbitrary, this proves

that g and h are weakly measurable.

Now since γ = ξ(g) and η = ξ(h), and we’ve established that g and h are

in L1, a final application of Theorem 2.12 to (15) yields

ξ
(∫

X×Y
f dµ× ν

)
= ξ
(∫

X

g(x) dµ
)

= ξ
(∫

Y

h(y) dν
)
.

Since ξ can be any element of H ∗, Corollary 3.10 implies the desired equality∫
X×Y

f dµ× ν =

∫
X

g(x) dµ =

∫
Y

h(y) dν.

3.4 Further properties of the Bochner integral; the

Fourier transform

In what follows we specialize to (X,M, µ) = (Rn,L,m), that is, Eu-

clidean n-space with Lebesgue measure. For a fixed element a ∈ Rn we

define translation by a on subsets and functions as follows: for a subset

E ⊂ Rn the translation of E by a is

τa(E) = {x− a : x ∈ E} = E − a,

and for a function f whose domain is Rn, the translation of f by a is

τaf(x) = f(x− a).

We also define the reflection of f by

f̃(x) = f(−x).

The Lebesgue measure m is translation-invariant, meaning that E ∈ L
implies τaE ∈ L with m(τaE) = m(E). It is also reflection-invariant, i.e.,

E ∈ L implies −E ∈ L with m(−E) = m(E). It follows that the Bochner

integral
∫

: L1(Rn,H ) → H is also translation- and reflection-invariant.

We first prove that the Lebesgue integral has these properties:
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Lemma 3.12. If f : Rn → [0,∞) is measurable, or if f ∈ L1(Rn,C), then∫
τaf =

∫
f and

∫
f̃ =

∫
f .

Proof. We prove the result for translation-invariance; the proof of reflection-

invariance is practically identical. For any E ∈ L we have τaχE = χa+E,

whence
∫
τaχE = m(a+E) = m(E) =

∫
χE. It follows by the linearity of the

integral that
∫
τaφ =

∫
φ for any simple function φ. Since f is measurable and

nonnegative, it is the limit of an increasing sequence {φn} of simple functions.

Then τaφn increases to τaf pointwise, and by the Monotone Convergence

Theorem
∫
τaφn dm →

∫
τaf dm. Therefore,∫

τaf dm = lim
n→∞

∫
τaφn dm = lim

n→∞

∫
φn dm =

∫
f dm.

The result for f ∈ L1(Rn,C) follows from the definition of
∫
f :∫

f =

∫
(Ref)+ −

∫
(Ref)− + i

∫
(Imf)+ − i

∫
(Imf)−,

and each of the integrands on the right-hand-side is nonnegative.

Remark 3.13. If f ∈ Lp(Rn,H ), 1 ≤ p ≤ ∞, then ‖f̃‖p = ‖τaf‖p = ‖f‖p.
For p =∞ this is obvious. For p <∞ this follows directly from the definition

of ‖f‖p and the fact that x 7→ ‖f(x)‖p is measurable.

Proposition 3.14. The Bochner integral
∫

: L1(Rn,H )→H is translation-

and reflection-invariant.

Proof. We prove translation-invariance. Let f ∈ L1(Rn,H ). Since
∫
χE =

m(E) for E ∈ L, the result holds for simple H -valued functions. By The-

orems 2.5 and 2.6, there is a sequence {ψn} of simple H -valued functions

such that ψn → f in L1(Rn,H ), and
∫
f is defined to be limn→∞

∫
ψn. Now

τaψn → τaf a.e., and by Remark 3.13,

‖τaψn − τaf‖1 = ‖τa(ψn − f)‖1 = ‖ψn − f‖1 → 0.

Therefore, ∫
τaf = lim

n→∞

∫
τaψn = lim

n→∞

∫
ψn =

∫
f.
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It is also true that m(δE) = δnm(E) for each δ > 0 and E ∈ L, that is, m

is homogeneous of degree n. It follows that
∫
f(δx) dx = δ−n

∫
f(x) dx, and

this holds for the Bochner integral as well, though we shall omit the proof.

Now that we have covered the invariance properties of the Bochner in-

tegral, we are ready to discuss convolution of vector-valued functions. For

conjugate exponents p and q, if

(i) K ∈ Lq(Rn,B(H1,H2))

(ii) f ∈ Lp(Rn,H1)

(iii) H2 is separable

we define the convolution of K with f—denoted K ∗ f—by

K ∗ f(x) =

∫
Rn

K(x− y)f(y) dy =

∫
Rn

τxK̃(y)f(y) dy,

where the vector-valued integral is the Bochner integral. Since K and f are

measurable and H2 is separable, it follows from Proposition 3.5 that K(·)f(·)
is measurable. By Hölder’s Inequality we have∫
‖K(x−y)f(y)‖H2 dy = ‖τxK̃f‖1 ≤ ‖τxK̃‖q‖f‖p = ‖K‖q‖f‖p <∞. (16)

Hence, τxK̃f ∈ L1(Rn,H2), so K ∗ f is defined on all of Rn.

Proposition 3.15 (Lp-continuity of translation). Let X be a Banach space,

and suppose that f ∈ Lp(Rn,X ), where 1 ≤ p <∞. Then

‖τhf − f‖p → 0 as |h| → 0.

Proof. We first prove Lp-continuity of translation for continuous, compactly

supported functions; that is, we show that for any g ∈ Cc(Rn,X ),

‖τhg − g‖p → 0 as |h| → 0.
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Let ε > 0, and let g ∈ Cc(Rn,X )—that is, let g be continuous with compact

support. There exists some a ∈ R such that supp g ⊂ [−a, a]n; it follows that

supp τhg ⊂ [a− 1, a+ 1]n

whenever |h| ≤ 1. Let K = [a− 1, a+ 1]n. Now g ∈ Cc(Rn,X ) implies that

g is uniformly continuous, whence there exists δ > 0 such that

‖τhg − g‖unif <
ε

(m(K))1/p

whenever |h| < δ. Choosing |h| < min(δ, 1), we have∫
Rn

‖τhg − g‖p dx ≤
(
‖τhg − g‖unif

)p
m(K) < εp,

whence ‖τhg − g‖p < ε.

Now let f ∈ Lp(Rn,X ). We show in the appendix that functions in

Lp(Rn,X ) can be approximated in Lp by continuous, compactly supported

functions; so we can find g ∈ Cc(Rn,X ) such that ‖g− f‖p is as small as we

like. Writing

τhf − f = (τhg − g) + (τhf − τhg) + (g − f),

and applying the triangle inequality yields the result, for we’ve already es-

tablished Lp continuity of translation for g, and

‖τh(f − g)‖p = ‖f − g‖p

by the translation-invariance of the Lebesgue integral.

Corollary 3.16. Suppose that K and f satisfy the conditions described

before Proposition 3.15, with 1 ≤ p ≤ ∞ and q conjugate to p. Then K ∗ f
is uniformly continuous on Rn.

Proof. It’s not difficult to show that τh(K ∗ f) = (τhK) ∗ f = K ∗ (τhf). As

in (16), it follows from Hölder’s inequality that

|K ∗ f(x)| ≤ ‖K ∗ f‖1 ≤ ‖K‖q‖f‖p
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for each x, whence ‖K ∗ f‖unif ≤ ‖K‖q‖f‖p. Thus for 1 < p ≤ ∞ we have

‖τh(K ∗ f)−K ∗ f‖unif = ‖(τhK −K) ∗ f‖unif ≤ ‖τhK −K‖q‖f‖p,

which tends to zero as |h| → 0 by 3.15. When p = 1,

‖τh(K ∗ f)−K ∗ f‖unif = ‖K ∗ (τhf − f)‖unif ≤ ‖K‖∞‖τhf − f‖1,

which tends to zero as |h| → 0 by 3.15 again.

Note that ∥∥∥K ∗ f(x)
∥∥∥

H2

≤
∫
‖K(x− y)f(y)‖H2 dy. (17)

Together (16) and (17) show that ‖K ∗ f‖unif ≤ ‖K‖q‖f‖p, which shows

that convolution with K can be regarded as a bounded linear operator from

Lp(Rn,H1) to the space C (Rn,H2) of continuous functions from Rn to H2.

The function K is called the kernel of this integral operator.

We can define the Fourier transform F on L1(Rn,H ) as usual: Ff = f̂ ,

where

f̂(y) ≡
∫
Rn

e2πix·yf(x) dx,

and the integral here is again the Bochner integral. This is well-defined,

because

‖e2πix·yf(x)‖H = |e2πix·y|‖f(x)‖H = ‖f(x)‖H ,

and f ∈ L1(Rn,H ). Moreover, f̂ ∈ L∞(Rn,H ), since by Theorem 2.6 we

have

‖f̂(y)‖H ≤
∫
x∈Rn

‖e2πix·yf(x)‖H dx = ‖f‖1,

and hence

‖f̂‖∞ = sup
y∈Rn

‖f̂(y)‖H ≤ ‖f‖1.
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4 Important Results for the Singular Integral

Theorem

Before we can attempt to give an application of vector-valued integration

to singular integral theory, we need a few important results, which we shall

include in this section. We follow Stein closely in the first two sections,

which correspond to sections I.3 and I.4 in Singular Integrals [10]. We follow

Grafakos [6] in the third section.

4.1 The Calderón-Zygmund lemma

The following theorem is interesting in itself, but will also play a part

in the proof of the theorem in the next section. For its proof we need the

Lebesgue Differentiation Theorem, which we shall discuss presently. We say

that a family F of measurable sets in Rn is regular at x, or that it shrinks

nicely to x, if there is some constant c > 0 such that each S ∈ F is contained

in an open ball B centred at x, with m(S) > cm(B). For example, using the

fact that Lebesgue measure on Rn is homogeneous of degree n (i.e., for each

δ > 0, m(δE) = δnm(E)), one may easily verify that the family of dilations

δE of some bounded set E with positive measure is regular at the origin.

We will see another example in the proof of the next theorem. Lebesgue’s

differentiation theorem says that for almost every x (specifically, for every x

in a special set called the Lebesgue set of f),

lim
S∈F

m(S)→0

1

m(S)

∫
S

f(y) dy = f(x)

for every family F that is regular at x. See page 98 of Folland and §1.8 of

Stein for proofs and discussion.

Theorem 4.1. Given any nonnegative integrable function f on Rn, and any

α > 0, there exists a closed set F ⊂ Rn such that f(x) ≤ α for almost

every x ∈ F , and such that F c is a union of closed cubes whose interiors are
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disjoint, and with the property that each such cube Qk satisfies

α <
1

m(Qk)

∫
Qk

f ≤ 2nα. (18)

Proof. Throughout the proof we take all cubes to be closed. Since f is

nonnegative and integrable,
∫
Rn f <∞, and hence for any cube Q such that

m(Q) ≥ 1
α

∫
Rn f , we have

1

m(Q)

∫
Q

f(x) dx ≤ 1

m(Q)

∫
Rn

f(x) dx ≤ α. (19)

Partition Rn into cubes of common diameter sufficiently large for (19) to

hold. Let Q′ be a fixed cube in this partition, and divide it into 2n congruent

cubes by bisecting each of its sides. For each of these new cubes Q′′, either

1

m(Q′′)

∫
Q′′
f(x) dx ≤ α (20)

or
1

m(Q′′)

∫
Q′′
f(x) dx > α. (21)

In the second case Q′′ becomes one of the cubes in the statement of the

theorem; the condition (18) holds for it because m(Q′′) = m(Q′)
2n

, and hence

α <
1

m(Q′′)

∫
Q′′
f(x) dx ≤ 2n

m(Q′)

∫
Q′
f(x) dx ≤ 2nα.

In the first case we subdivide again, and continue this process ad infini-

tum, if necessary. We do this for each of the cubes in our partition of Rn.

We let Ω =
⋃
kQk be the union of all the cubes for which the second case

(21) holds. Let F = Ωc; it remains only to show that f ≤ α a.e. in F .

Let x ∈ F , and notice that each cube in our decomposition which contains

x is a cube for which (20) holds. Set F (x) to be the set of all cubes in our

decomposition containing x. We claim that F (x) is regular at x. To see

this, fix Q ∈ F (x). Let a denote its sidelength, and let d =
√
na denote its

diagonal length (the maximum distance between any two points in Q). Let
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Q∗ be the cube centred at x with sidelength equal to d (this cube need not

be in the decomposition). Note that B(x, d)—the open ball centred at x of

radius d—is contained in Q∗; for if y ∈ B(x, d), then |x − y| < d, whence

y ∈ Q∗. Now,

m(Q∗) = (2d)n = 2n(
√
na)n = 2nnn/2an = 2nnn/2m(Q).

Therefore,

m(B) < m(Q∗) = 2nnn/2m(Q),

which proves our claim that F (x) is regular at x. We can now apply the

Lebesgue differentiation theorem: for every x in the Lebesgue set of f , we

have

f(x) = lim
Q∈F(x)

m(Q)→0

1

m(Q)

∫
Q

f(y) dy.

But each Q ∈ F (x) satisfies condition (20), and therefore f(x) ≤ α, as

desired.

Remark 4.2. The set F c in the above theorem satisfies m(F c) < 1
α
‖f‖1. To

see this, we first observe that fχ⋃n
1 Qk

increases to fχ⋃∞
1 Qk

, and therefore by

the Monotone Convergence theorem,∫
⋃∞

1 Qk

f = lim
n→∞

∫
fχ⋃n

1 Qk
.

But ∫
fχ⋃n

1 Qk
=

∫
f

n∑
1

χQk
=

n∑
1

∫
Qk

f.

Therefore, ∫
⋃∞

1 Qk

f =
∞∑
1

∫
Qk

f.

Using this and (18), we have

m(F c) =
∑
k

m(Qk) <
1

α

∑
k

∫
Qk

f =
1

α

∫
⋃

k Qk

f =
1

α

∫
F c

f ≤ 1

α
‖f‖1.
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4.2 Some terminology, and an interpolation theorem

We begin this section with some terminology:

Definition 4.3. Let H1 and H2 be Hilbert spaces, and let T be a map

from Lp(Rn,H1) to the set of (L,BH2)-measurable functions on Rn, where

1 ≤ p ≤ ∞. For 1 ≤ q <∞, we say that T is of weak-type (p, q) if there is a

constant A such that

m{x : ‖Tf(x)‖ > α} ≤
(A‖f‖p

α

)q
for all f ∈ Lp(Rn,H1) and all α > 0.

Definition 4.4. Suppose that T is a map from Lp(Rn,H1) to Lq(Rn,H2),

where 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞. We say that T is of type (p, q) if there is

a constant A such that

‖Tf‖q ≤ A‖f‖p

for all f ∈ Lp(Rn,H1).

We also say that T is of weak-type (p,∞) if it is of type (p,∞), so that

the two definitions coincide when q = ∞. Note that if T is of type (p, q),

then it is of weak-type (p, q), for

αqm{x : ‖Tf(x)‖ > α} ≤
∫
Rn

‖Tf(x)‖q dx = ‖Tf‖qq ≤ (A‖f‖p)q.

Lastly, we define Lp1 +Lp2 , for p1, p2 > 0, to be the space of all functions

of the form f = f1 + f2, where f1 ∈ Lp1 and f2 ∈ Lp2 .

Lemma 4.5. For p1 ≤ p ≤ p2, we have Lp ⊂ Lp1 + Lp2 .

Proof. Let f ∈ Lp and fix γ > 0. Now set

f1(x) =

{
f(x) if ‖f(x)‖ > γ

0 if ‖f(x)‖ ≤ γ

f2(x) =

{
f(x) if ‖f(x)‖ ≤ γ

0 if ‖f(x)‖ > γ
.
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We have∫
Rn

‖f1(x)‖p1 dx =

∫
‖f(x)‖>γ

‖f(x)‖p1 dx =

∫
‖f(x)‖>γ

‖f(x)‖p‖f(x)‖p1−p dx,

and since p1 − p ≤ 0, this implies∫
Rn

‖f1(x)‖p1 dx ≤ γp1−p
∫
‖f(x)‖>γ

‖f(x)‖p dx,

which is finite because f ∈ Lp. Also,∫
Rn

‖f2(x)‖p2 dx =

∫
Rn

‖f2(x)‖p‖f2(x)‖p2−p dx ≤ γp2−p
∫
Rn

‖f(x)‖p dx,

which again is finite since f ∈ Lp. Thus, f = f1 + f2, where f1 ∈ Lp1 and

f2 ∈ Lp2 .

Theorem 4.6. Suppose that 1 < r ≤ ∞, and suppose that T is a map from

(L1 + Lr)(Rn,H1) to the space of all (L,BH2)-measurable functions, such

that

(i) T is subadditive, i.e., ‖T (f + g)(x)‖ ≤ ‖Tf(x)‖ + ‖Tg(x)‖ for all

f, g ∈ L1 + Lr, x ∈ Rn.

(ii) T is of weak-type (1, 1), i.e., m{x : ‖Tf(x)‖ > α} ≤ A1‖f‖1
α

for all

f ∈ L1.

(iii) T is of weak-type (r, r), i.e., m{x : ‖Tf(x)‖ > α} ≤
(
Ar‖f‖r

α

)r
for

all f ∈ Lr, when r <∞, and ‖Tf‖r ≤ Ar‖f‖r if r =∞.

Then T is of type (p, p) for 1 < p < r, i.e.,

‖Tf‖p ≤ Ap‖f‖p for all f ∈ Lp,

where Ap depends only on A1, Ar, p, and r.
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Proof. We prove the result for p < ∞. Let f ∈ Lp(Rn,H1). A useful fact

from real analysis is that∫
Rn

‖Tf(x)‖p dx = p

∫ ∞
0

αp−1λ(α) dα, (22)

where λ(α) = m{x : ‖Tf(x)‖ > α} (λ is called the distribution function

associated with Tf ; see Folland, pp. 197–198 for a discussion and a proof

of the above equation). We will estimate λ(α) in terms of an L1 function

and an Lr function, for both of which T has weak-type inequalities by the

hypotheses.

As in the lemma, we set

f1(x) =

{
f(x) if ‖f(x)‖ > α

0 if ‖f(x)‖ ≤ α

f2(x) =

{
f(x) if ‖f(x)‖ ≤ α

0 if ‖f(x)‖ > α
,

so that f = f1 + f2, where f1 ∈ L1 and f2 ∈ Lr. Now by subadditivity, we

have

‖Tf(x)‖ ≤ ‖Tf1(x)‖+ ‖Tf2(x)‖ for all x.

Therefore,

{x : ‖Tf(x)‖ > α} ⊂ {x : ‖Tf1(x)‖ > α/2} ∪ {x : ‖Tf2(x‖) > α/2},

whence

λ(α) ≤ m{x : ‖Tf1(x)‖ > α/2}+ m{x : ‖Tf2(x)‖ > α/2}.

Therefore by the hypotheses (ii) and (iii),

λ(α) ≤ A1

α/2

∫
Rn

‖f1(x)‖ dx+
Arr

(α/2)r

∫
Rn

‖f2(x)‖r dx

=
2A1

α

∫
‖f‖>α

‖f(x)‖ dx+
(2Ar)

r

αr

∫
‖f‖≤α

‖f(x)‖r dx.
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Hence by (22),∫
Rn

‖Tf(x)‖p dx ≤ 2A1p

∫ ∞
0

α−1αp−1

∫
‖f‖>α

‖f(x)‖ dx dα

+ (2Ar)
rp

∫ ∞
0

α−rαp−1

∫
‖f‖≤α

‖f(x)‖r dx dα. (23)

We treat each of the terms on the right-hand-side of (23) separately.

Ignoring the constant in front for now, we see that the first term can be

written as ∫ ∞
0

αp−2

∫
Rn

‖f(x)‖χ‖f‖−1(α,∞)(x) dx dα.

It is easy to verify that χ‖f‖−1(α,∞)(x) = χ(0,‖f(x)‖)(α), and using this together

with the Tonelli theorem we get∫
Rn

‖f(x)‖
∫ ∞

0

αp−2χ(0,‖f(x)‖)(α) dα dx,

which is ∫
Rn

‖f(x)‖
∫ ‖f(x)‖

0

αp−2 dα dx.

This works out to
1

p− 1

∫
Rn

‖f(x)‖‖f(x)‖p−1 dx,

or simply 1
p−1
‖f‖pp.

The second term in (23) is dealt with similarly: ignoring the constant in

front, we write it as∫ ∞
0

α−rαp−1

∫
Rn

‖f(x)‖rχ‖f‖−1[0,α](x) dx dα.

Then noting that χ‖f‖−1[0,α](x) = χ[‖f(x)‖,∞)(α) and applying the Tonelli the-

orem, we get ∫
Rn

‖f(x)‖r
∫ ∞
‖f(x)‖

αp−1−r dα dx.

Since p < r, the inner improper integral works out to 1
r−p‖f(x)‖p−r, and

hence the second term becomes 1
r−p‖f‖

p
p.
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Altogether, we have shown that

‖Tf‖pp =

∫
Rn

‖Tf(x)‖p dx ≤ 2A1p

p− 1
‖f‖pp +

(2Ar)
rp

r − p
‖f‖pp

=

(
2A1

p− 1
+

(2Ar)
r

r − p

)
p‖f‖pp.

Taking the pth root of both sides, we are done.

4.3 A duality theorem

Let X be a Banach space, and let X ∗ denote its dual. Let 1 ≤ p ≤ ∞,

and let q be the conjugate exponent of p. For f ∈ Lp(Rn,X ) we define θf

on Lq(Rn,X ∗) by

θf (g
∗) =

∫
Rn

g∗(x)f(x) dx.

Then θf is well-defined since

f ∈ Lp(Rn,X ) implies ‖f(x)‖X ∈ Lp(Rn,C),

and

g∗ ∈ Lq(Rn,X ∗) implies ‖g∗(x)‖op ∈ Lq(Rn,C);

thus Hölder’s inequality gives us∫
Rn

|g∗(x)f(x)| dx ≤
∫
Rn

‖g∗(x)‖op‖f(x)‖X dx

≤ ‖g∗‖Lq(Rn,X ∗)‖f‖Lp(Rn,X )

<∞. (24)

Therefore θf is well-defined on Lq(Rn,X ∗).

The main objective for this section is proving the following theorem:

Theorem 4.7. The map f 7→ θf is an isometric embedding of Lp(Rn,X )

into Lq(Rn,X ∗)∗. In other words,

‖f‖p = sup
‖g∗‖Lq(Rn,X ∗)≤1

|θf (g∗)|.
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Before proving the theorem, we make some preliminary remarks. For any

vector space X, we let Cc(Rn, X) denote the space of continuous, compactly

supported functions from Rn into X. We show in the appendix that for

any Banach space X , Cc(Rn,X ) is dense in Lp(Rn,X ) whenever 1 ≤ p <

∞. It follows that for p > 1 we can just as well take the supremum in

Theorem 4.7 over all φ ∈ Cc(Rn,X ∗) which satisfy ‖φ‖q ≤ 1. To see this,

let g∗ ∈ Lq(Rn,X ∗) with ‖g∗‖q = 1. We can approximate it in Lq(Rn,X ∗)

by a sequence φn ∈ Cc(Rn,X ∗). Furthermore, if we let ψn = φn/‖φn‖q, then

‖ψn‖q = 1, and since ‖φn‖q → ‖g‖q = 1, we have

‖ψn − φn‖q =
∣∣ 1
‖φn‖q − 1

∣∣‖φn‖q → 0.

Hence,

‖ψn − g∗‖q ≤ ‖ψn − φn‖q + ‖φn − g∗‖q → 0.

Thus g∗ can be approximated by a sequence ψn ∈ Cc(Rn,X ∗) with ‖ψn‖q =

1. Now

|θf (g∗ − ψn)| ≤
∫
Rn

‖g∗(x)− ψn(x)‖op‖f(x)‖X dx

≤ ‖g∗ − ψn‖Lq(Rn,X ∗)‖f‖Lp(Rn,X ),

and this tends to 0. Thus, θf (ψn)→ θf (g
∗), and therefore

‖f‖p = sup
‖g∗‖Lq(Rn,X ∗)≤1

|θf (g∗)| = sup
ψ∈Cc(Rn,X ∗)
‖ψ‖q=1

|θf (ψ)|.

The next proposition is needed for the proof of Theorem 4.7. For a proof,

see Folland [5], p. 188.

Proposition 4.8. Suppose that p and q are conjugate exponents, and 1 ≤
p ≤ ∞. For f ∈ Lp(Rn,C) we have

‖f‖p = sup
{∣∣∣ ∫ fg

∣∣∣ : g ∈ Lq(Rn,C) with ‖g‖q = 1
}
. (25)
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The denseness of Cc(Rn,C) in Lq(Rn,C) has the consequence that for

p > 1 in Proposition 4.8, we may take the supremum instead over continuous,

compactly supported functions of unit norm. The argument is simply a

repetition of the one just given: let g ∈ Lq(Rn,C) with ‖g‖q = 1. As before,

there is a sequence {ψn} in Cc(Rn,C) with ‖ψn‖q = 1 such that ψn → g in

Lq(Rn,C). Then by Hölder’s inequality∣∣∣ ∫ f(g − ψn)
∣∣∣ ≤ ∫ |f ||g − ψn| ≤ ‖f‖p‖g − ψn‖q → 0.

Thus
∫
fg = limn→∞

∫
fψn, which implies that

‖f‖p = sup
‖g‖Lq(Rn,C)≤1

∣∣∣ ∫ fg
∣∣∣ = sup

ψ∈Cc(Rn,C)
‖ψ‖q=1

∣∣∣ ∫ fψ
∣∣∣.

We now come to the proof of Theorem 4.7. We follow Grafakos ([6],

pp. 324–325).

Proof. We wish to show that for any f ∈ Lp(Rn,X ), 1 ≤ p ≤ ∞,

‖f‖p = sup
‖g∗‖Lq(Rn,X ∗)≤1

∣∣∣ ∫
Rn

g∗(x)f(x) dx
∣∣∣. (26)

For any g∗ ∈ Lq(Rn,X ∗) with ‖g∗‖q ≤ 1, (24) shows that∫
Rn

|g∗(x)f(x)| dx ≤ ‖g∗‖q‖f‖p ≤ ‖f‖p,

whence we see that the right-hand-side of (26) is controlled by the left-hand-

side.

Now to establish the more difficult inequality. Let f ∈ Lp(Rn,X ), and

let ε > 0. We know from Proposition A.1 in the appendix that there exists

a function φ =
∑m

j=1 χEj
xj ∈ Lp(Rn,X )—where m = ∞ when p = ∞, and

the Ej are disjoint, measurable subsets of Rn—such that ‖f − φ‖p < ε/3.

Since ‖φ‖X ∈ Lp(Rn,C), we may—by Proposition 4.8—choose a nonnegative

function h ∈ Lq(Rn,C) such that ‖h‖q = 1 and

‖φ‖p <
∫
Rn

‖φ(x)‖X h(x) dx+
ε

6
. (27)
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When p < ∞, we may—by the remarks made earlier—choose h to be

continuous and compactly supported, which ensures that h is integrable.

The integrability of h when p = ∞ is given, since h ∈ Lq(Rn,C). It follows

from Proposition 3.9 that for each xj there exists an x∗j ∈ X ∗ satisfying

‖x∗j‖op = 1 and x∗jxj = ‖xj‖; in particular

‖xj‖ < x∗jxj +
ε

6(‖h‖1 + 1)
. (28)

Set G(x) =
∑m

j=1 h(x)χEj
(x)x∗j . Then G(x) ∈ X ∗ for each x. The

measurability of Ej implies that χEj
x∗j is (L,BX ∗)-measurable for each j,

and it follows that G is (L,BX ∗)-measurable. Moreover, when q <∞,

‖G‖q =

∫
Rn

∥∥∥ m∑
j=1

h(x)χEj
(x)x∗j

∥∥∥q
op

dx

=

∫
Rn

m∑
j=1

χEj
(x)‖h(x)x∗j‖qop dx

=

∫
Rn

m∑
j=1

χEj
(x)h(x)q dx

≤ ‖h‖qq,

whence ‖G‖q ≤ 1. When q =∞,

‖G(x)‖op =
∞∑
j=1

χEj
(x)‖h(x)x∗j‖op =

∞∑
j=1

χEj
(x)h(x) ≤ ‖h‖∞ = 1,

whence ‖G‖∞ ≤ 1.
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Now observe that

G(x)φ(x) =
m∑
j=1

h(x)χEj
(x)x∗j

( m∑
i=1

χEi
(x)xi

)
=

m∑
j=1

m∑
i=1

h(x)χEj
(x)χEi

(x)x∗jxi

=
m∑
j=1

h(x)χEj
(x)x∗jxj

>
m∑
j=1

h(x)χEj
(x)

(
‖xj‖ −

ε

6(‖h‖1 + 1)

)
by (28).

Then

G(x)φ(x) > h(x)
m∑
j=1

χEj
(x)‖xj‖ −

h(x)ε

6(‖h‖1 + 1)

m∑
j=1

χEj
(x)

= h(x)‖φ(x)‖X −
h(x)ε

6(‖h‖1 + 1)

m∑
j=1

χEj
(x),

which implies that∫
Rn

G(x)φ(x) dx ≥
∫
Rn

h(x)‖φ(x)‖X dx− ε

6(‖h‖1 + 1)

∫
Rn

h(x)
m∑
j=1

χEj
(x) dx

> ‖φ‖p −
ε

6
− ε

6(‖h‖1 + 1)
‖h‖1 by (27)

> ‖φ‖p −
ε

3
.

Recall that φ was chosen such that ‖φ − f‖p < ε
3
. This implies that

‖φ‖p ≥ ‖f‖p − ε
3
. Therefore, the preceding calculation shows that∫

Rn

G(x)φ(x) dx > ‖f‖p −
2ε

3
. (29)
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Furthermore, since∫
Rn

∣∣G(x)
(
φ(x)− f(x)

)∣∣ dx ≤ ∫
Rn

‖G(x)‖op‖φ(x)− f(x)‖X dx

≤ ‖G‖q‖φ− f‖p
≤ ‖φ− f‖p

<
ε

3
,

we have ∣∣∣ ∫
Rn

G(x)φ(x) dx−
∫
Rn

G(x)f(x) dx
∣∣∣ < ε

3
.

Bearing in mind that
∫
Rn G(x)φ(x) dx is nonnegative, this means that∫

Rn

G(x)φ(x) dx <
∣∣∣ ∫

Rn

G(x)f(x) dx
∣∣∣+

ε

3

≤ sup
‖g∗‖Lq(Rn,X ∗)≤1

∣∣∣ ∫
Rn

g∗(x)f(x) dx
∣∣∣+

ε

3
. (30)

Putting (29) and (30) together, we get

‖f‖p < sup
‖g∗‖Lq(Rn,X ∗)≤1

∣∣∣ ∫
Rn

g∗(x)f(x) dx
∣∣∣+ ε.

Letting ε→ 0 yields the desired inequality.

Now that we have proven Theorem 4.7, we discuss more specifically what

it means in Hilbert space. Recall the Riesz Representation Theorem:

Theorem 4.9. Given ξ ∈ H ∗, there is a unique vector y ∈ H such that

ξ = 〈·, y〉, and moreover, ‖ξ‖op = ‖y‖H .

Given a Hilbert space H , one may consider the conjugate vector space

of H , denoted H , whose elements are the elements of H , whose addition

is defined to be addition in H , and with scalar multiplication defined by

α ∗ x = αh
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for all α ∈ C. If one defines the inner product on H by

〈x, y〉H = 〈x, y〉H ,

then H becomes a Hilbert space. Now define, for each y ∈ H the map

φy : H → C, by

φy(x) = 〈x, y〉H .

Then the Reisz Representation Theorem says that y 7→ φy is a surjective

isometry from H onto H ∗. This map, however, is not linear; it is antilinear,

or conjugate linear. But since the elements of H are elements of H , we

can regard y 7→ φy as a linear map from H into H ∗, and then the Riesz

Representation Theorem says that this map is a Hilbert space isomorphism.

Suppose we are given g∗ ∈ Lq(Rn,H ∗); by the Riesz Representation

Theorem, there is an injective map g : Rn →H (which may also be regarded

as a map from Rn into H ) such that g∗(x) = φg(x) for all x, and

‖g∗(x)‖op = ‖g(x)‖H .

for each x. It follows that

θf (g
∗) =

∫
g∗(x)f(x) dx =

∫
Rn

〈f(x), g(x)〉H dx,

and

‖g‖Lq(Rn,H ) = ‖g∗‖Lq(Rn,H ∗).

It follows that for Hilbert spaces Theorem 4.7 may be expressed as follows:

Theorem 4.10. The map f 7→ θf is an isometric embedding of Lp(Rn,H )

into Lq(Rn,H ∗)∗, and

‖f‖p = sup
‖g∗‖Lq(Rn,H ∗)≤1

|θf (g∗)| = sup
‖g‖Lq(Rn,H )≤1

∣∣∣ ∫
Rn

〈f(x), g(x)〉H dx
∣∣∣.

As usual, we may take the supremum in the above equation over the contin-

uous, compactly supported functions whose Lq norms are bounded by 1:

‖f‖p = sup
ψ∗∈Cc(Rn,H ∗)
‖ψ∗‖q=1

|θf (ψ∗)| = sup
ψ∈Cc(Rn,H )
‖ψ‖q=1

∣∣∣ ∫
Rn

〈f(x), ψ(x)〉H dx
∣∣∣.
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5 Lp Boundedness of a Type of Singular In-

tegral

In this concluding section, we present a modified version of Theorem 1

from section II of Stein’s book Singular Integrals [10]. In Singular Inte-

grals there is a section devoted to showing that a type of singular integral

is bounded on Lp. We attempt to imitate this result and extend it to the

vector-valued setting. We follow Stein closely in the proof of Theorem 5.1.

Suppose that we have a linear transformation T of type (2, 2) from

L2(Rn,H1) to L2(Rn,H2), where H1 and H2 are separable. Suppose fur-

ther that for bounded, compactly supported, measurable functions, T may

be written as a convolution

Tf(x) = K ∗ f(x) =

∫
Rn

K(x− y)f(y) dy (31)

for x /∈ supp f . The kernel K in (31) takes values in B(H1,H2) and is

required to satisfy1

(i) K is (L,BB(H1,H2))-measurable.

(ii) K is integrable on any compact set that excludes the origin.

(iii) there is a constant B > 0 such that∫
‖x‖≥2‖y‖

‖K(x− y)−K(x)‖op dx ≤ B; ‖y‖ > 0.

Thus T is a vector-valued function which can be expressed as a convolution

operator on certain functions, with kernel having a singularity at the origin.

Condition (iii) expresses this singularity. Condition (ii) ensures that (31) is

well-defined for x /∈ supp f .

We would like to be able to assert that T is of type (p, p) for all p ∈ (1,∞).

We were able show that T is of type (p, p) for p ∈ (1, 2), but due to the fact

1The first two hypotheses come from [6], § 4.6.1.
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that our vector-valued Lp duality theorem is not as strong as the scalar-

valued result used in Singular Integrals, we cannot prove Lp boundedness for

the case p ∈ (2,∞) without a fairly strong hypothesis. Specifically, to prove

Lp boundedness for p > 2 we need the hypothesis

(iv) Tf ∈ Lp(Rn,H2) when f is continuous and compactly supported.

Lastly, in order to prove Lp boundedness for p > 2, the differences that

arise from working in the setting of vector-valued functions motivate us to

require that

(v) T ∗—the adjoint of T when T is regarded as a bounded linear operator

from L2(Rn,H1) to L2(Rn,H2)—is given in the same way as T but for

some kernel K∗ which satisfies the same requirements as K, say with

B′ instead of B in condition (iii).

Theorem 5.1. Suppose that T is a linear transformation with the properties

described in the second paragraph above—that is, with kernel satisfying (i)

to (iii). Then for each p ∈ (1, 2) there exists a constant Ap such that

‖Tf‖p ≤ Ap‖f‖p (32)

for all bounded, compactly supported f . Each Ap depends only on p, B, and

the dimension n. One can thus extend T to all of Lp(Rn,H2) by continuity,

thereby making T of type (p, p) on Lp(Rn,H2).

Proof. Getting oriented: The first and largest part of the proof consists of

showing that T is of weak-type (1, 1) on the bounded, compactly supported

functions. In other words, we wish to find a constant C, independent of f

and α, such that

m{x : ‖Tf(x)‖ > α} ≤ C

α
‖f‖1.

Step 1: Splitting up f into g and b. Establishing a weak-type

(1, 1) inequality for Tg. Let f be a bounded, compactly supported, H1-

valued measurable function on Rn. Then clearly f ∈ L1(Rn,H1). We apply
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Theorem 4.1 to the nonnegative integrable function ‖f‖: we have a set F ⊂
Rn such that ‖f‖ ≤ α a.e. on F , Ω = F c =

⋃∞
j=1Qj, and

m(Ω) <
1

α
‖f‖1, (33)

1

m(Qk)

∫
Qk

‖f(x)‖ dx ≤ 2nα. (34)

We set

g(x) =

{
f(x) if x ∈ F

1
m(Qj)

∫
Qj
f(x) dx if x ∈ Q◦j ,

and

b(x) = f(x)− g(x).

This defines g(x) and b(x) for a.e. x. Observe that g is bounded, since

‖f‖ ≤ α on F , and on F c we have (34). Moreover, we can show that g

is compactly supported. Its support is contained in K0 = supp f ∪ {Qk :

Qk ∩ supp f 6= ∅}. Recall the partition of Rn into cubes in the proof of

Theorem 4.1; consider the cubes at the top level in the partition—the largest

cubes, that is. It follows easily from f being compactly supported that K0

will be contained in a finite union of these cubes, which will be closed and

bounded. Since supp g = {x ∈ Rn : g(x) 6= 0} is a closed subset of a compact

set, it is compact.

Now,

‖g‖2
2 =

∫
Rn

‖g(x)‖2 dx =

∫
F

‖g(x)‖2 dx+

∫
Ω

‖g(x)‖2 dx. (35)

For the first term on the right-hand-side,∫
F

‖g(x)‖2 dx =

∫
F

‖f(x)‖‖f(x)‖ dx ≤
∫
F

α‖f(x)‖ dx ≤ α‖f‖1.
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For the second term, note that if x ∈ Ω then x ∈ Qj for some j, and hence

‖g(x)‖2 =
1

m(Qj)2

∥∥∥∫
Qj

f(x) dx
∥∥∥2

≤ 1

m(Qj)2

(∫
Qj

‖f(x)‖ dx
)2

≤ 22nα2 by (34).

Hence, by (33), ∫
Ω

‖g(x)‖2 dx ≤ 22nα2m(Ω) ≤ 22nα‖f‖1.

So altogether the right-hand-side of (35) is bounded by (22n + 1)α‖f‖1,

which shows that g ∈ L2(Rn,H1), with ‖g‖2
2 ≤ (22n + 1)α‖f‖1. Thus, since

T is of type (2, 2) (and therefore of weak-type (2, 2)), there exists a constant

A2 such that

m{x : ‖Tg(x)‖ > α/2} ≤ 4A2
2

α2
‖g‖2

2 ≤
C0

α
‖f‖1, (36)

where C0 = 4A2
2(22n + 1).

Step 2: establishing a weak-type (1, 1) inequality for Tb. We wish

to find an analogous estimate for Tb, so that, putting the two estimates

together, we will have that T is of weak-type (1, 1). We first make some

observations about b:

∫
Qj

b(x) dx =

∫
Qj

f(x) dx−
∫
Qj

g(x) dx

=

∫
Qj

f(x) dx−
∫
Qj

1

m(Qj)

∫
Qj

f(y) dy dx

=

∫
Qj

f(x) dx− 1

m(Qj)

∫
Qj

1 dx

∫
Qj

f(y) dy.
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Thus,

b(x) = 0 for all x ∈ F, and

∫
Qj

b(x) dx = 0. (37)

Sub-step: A modified decomposition of the domain into cubes.

Now we consider cubes Q∗j with the same centre yj as the cubes Qj, but

with sidelength expanded by a factor of 2
√
n. We let Ω =

⋃
j Qj = F c,

Ω∗ =
⋃
j Q
∗
j , and F ∗ = (Ω∗)c. Then Ω ⊂ Ω∗ and F ∗ ⊂ F . Moreover,

m(Ω∗) ≤ (2
√
n)nm(Ω), (38)

since

m(Ω∗) ≤
∞∑
j=1

m(Q∗j) =
∞∑
j=1

(
2
√
n sidelength(Qj)

)n
,

and
∞∑
j=1

(
sidelength(Qj)

)n
=
∞∑
j=1

m(Qj) = m(Ω).

A geometric argument shows that if x ∈ (Q∗j)
c and y ∈ Qj, then

‖x− yj‖ ≥ 2‖y − yj‖. (39)

For if we let s denote the sidelength of Qj, then y ∈ Qj means that

|yi − yji | ≤
s

2
for all i = 1, 2, · · · , n.

Therefore

‖y − yj‖ =

( n∑
i=1

|yi − yji |2
)1/2

≤
( n∑

i=1

(s
2

)2
)1/2

=

√
ns

2
.

Moreover, if x /∈ Q∗j , then by definition, |x` − yj` | >
2
√
ns

2
=
√
ns for some

` = 1, · · · , n, and hence

‖x− yj‖ =

( n∑
i=1

|xi − yji |2
)1/2

≥ |x` − yj` | >
√
ns.

54



Thus we have that ‖x− yj‖ ≥ 2‖y − yj‖.

Sub-step: splitting up b. We now define bj by

bj(x) =

{
b(x) if x ∈ Qj

0 if x /∈ Qj.

Then b(x) =
∑∞

j=1 bj(x) for a.e. x, and moreover,

Tb(x) =
∞∑
j=1

Tbj(x) for x ∈ F ∗. (40)

To verify this we first observe that b is compactly supported (because g and

f are), with supp b ⊂ Ω ⊂ Ω∗ by (37). So for x ∈ F ∗ we have

Tb(x) =

∫
Rn

K(x− y)b(y) dy.

Now
∑N

1 bj(y)→ b(y) for a.e. y, and since K(x− y) is continuous,

N∑
j=1

K(x− y)bj(y)→ K(x− y)b(y)

for a.e. y. Now

N∑
j=1

K(x− y)bj(y) =

{
K(x− y)b(y) if y ∈

⋃N
1 Qj

0 if otherwise,

and hence ‖
∑N

1 K(x − y)bj(y)‖ ≤ ‖K(x − y)b(y)‖ ∈ L1. Thus, by the

dominated convergence theorem for the Bochner integral,

Tb(x) = lim
N→∞

∫
Rn

N∑
j=1

K(x− y)bj(y) dy =
∞∑
j=1

∫
Rn

K(x− y)bj(y) dy.

In other words, Tb(x) =
∑
Tbj(x).

Sub-step: Estimating
∑∞

j=1

∫
Qj
‖bj(y)‖ dy. Observe that for y ∈ Qj,
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‖bj(y)‖ = ‖b(y)‖ =
∥∥∥f(y)− 1

m(Qj)

∫
Qj

f(y) dy
∥∥∥

≤ ‖f(y)‖+
1

m(Qj)

∫
Qj

‖f(y)‖ dy

≤ ‖f(y)‖+ 2nα by (34).

Hence, ∫
Qj

‖bj(y)‖ dy ≤
∫
Qj

‖f(y)‖ dy + 2nαm(Qj),

and since by (34) again,
∫
Qj
‖f(y)‖ dy ≤ 2nαm(Qj), this gives us∫

Qj

‖bj(y)‖ dy ≤ 2n+1αm(Qj).

Therefore,

∞∑
j=1

∫
Qj

‖bj(y)‖ dy ≤ 2n+1α
∞∑
j=1

m(Qj) = 2n+1αm(Ω).

By (33), this means

∞∑
j=1

∫
Qj

‖bj(y)‖ dy ≤ 2n+1‖f‖1.

Sub-step: Weak-type estimate for Tb on F ∗. Now, since by (37)∫
Qj
bj(y) dy = 0, Theorem 2.12 gives us

∫
Qj
K(x − yj)bj(y) dy = 0, and

therefore

Tbj(x) =

∫
Qj

[K(x− y)−K(x− yj)]bj(y) dy, (41)

for x /∈ Qj. Now by (40),∫
F ∗
‖Tb(x)‖ dx =

∫
F ∗

∥∥∥ ∞∑
j=1

Tbj(x)
∥∥∥ dx ≤

∫
F ∗

∞∑
j=1

‖Tbj(x)‖ dx
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where we are using the continuity of the norm. By the monotone convergence

theorem, ∫
F ∗

∞∑
j=1

‖Tbj(x)‖ dx =
∞∑
j=1

∫
F ∗
‖Tbj(x)‖ dx.

Also, since F ∗ = (Ω∗)c = (
⋃
Q∗j)

c =
⋂

(Q∗j)
c ⊂ (Q∗j)

c, we have∫
F ∗
‖Tbj(x)‖ dx ≤

∫
x/∈Q∗j
‖Tbj(x)‖ dx,

and then by (41)∫
x/∈Q∗j
‖Tbj(x)‖ dx ≤

∫
x/∈Q∗j

∫
Qj

‖K(x− y)−K(x− yj)‖‖bj(y)‖ dy dx.

By Tonelli’s theorem this becomes∫
Qj

‖bj(y)‖
∫
x/∈Q∗j
‖K(x− y)−K(x− yj)‖ dx dy.

Recalling (39) we know that {x : x /∈ Q∗j} ⊂ {x : ‖x− yj‖ ≥ 2‖y− yj‖}, and

therefore

∫
x/∈Q∗j
‖K(x−y)−K(x−yj)‖ dx ≤

∫
‖x−yj‖≥2‖y−yj‖

‖K(x−y)−K(x−yj)‖ dx.

Make the substitutions x′ = x − yj and y′ = y − yj. By the translation-

invariance of the integral we have

∫
‖x−yj‖≥2‖y−yj‖

‖K(x−y)−K(x−yj)‖ dx =

∫
‖x′‖≥2‖y′‖

‖K(x′−y′)−K(x′)‖ dx′,

and by our hypothesis (iii) this is bounded by B. So altogether we have∫
F ∗
‖Tb(x)‖ dx ≤

∞∑
j=1

∫
F ∗
‖Tbj(x)‖ dx ≤ B

∞∑
j=1

∫
Qj

‖bj(y)‖ dy.
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Therefore, by the preceding sub-step,∫
F ∗
‖Tb(x)‖ dx ≤ B2n+1‖f‖1. (42)

It follows directly from (42) that

m{x ∈ F ∗ : ‖Tb(x)‖ > α/2} ≤ 2

α
· 2n+1B‖f‖1.

Sub-step: controlling the size of (F ∗)c. This follows easily from (33):

m((F ∗)c) = m(Ω∗) ≤ (2
√
n)nm(Ω) ≤ (2

√
n)n

α
‖f‖1.

Concluding sub-step: the weak-type (1, 1) inequality for Tb. Clearly,

m{x : ‖Tb(x)‖ > α/2} ≤ m{x ∈ F ∗ : ‖Tb(x)‖ > α/2}+ m((F ∗)c).

We have already found estimates in terms of 1
α
‖f‖1 for each of the terms on

the right-hand-side of this inequality, so that

m{x : ‖Tb(x)‖ > α/2} ≤
(2n+2B

α
+

(2
√
n)n

α

)
‖f‖1 =

C1

α
‖f‖1, (43)

where C1 = 2n+2B + (2
√
n)n.

Step 3: The weak-type (1, 1) inequality for Tf . Since T is linear,

we have Tf = Tg + Tb, which implies ‖Tf‖ ≤ ‖Tg‖+ ‖Tb‖. It follows that

{x : ‖Tf(x)‖ > α} ⊂
{
x : ‖Tg(x)‖ > α

2

}
∪
{
x : ‖Tb(x)‖ > α

2

}
,

which implies

m{x : ‖Tf‖ > α} ≤ m{x : ‖Tg‖ > α/2}+ m{x : ‖Tb‖ > α/2}. (44)

This, together with steps 1 and 2, gives us

m{x : ‖Tf(x)‖ > α} ≤ C

α
‖f‖1,
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where C = C0 + C1. This proves that T is of weak-type (1, 1) on compactly

supported, bounded functions.

Step 4: Interpolating to obtain the type (p, p) inequality for

1 < p < 2. Now that we have shown that T is of weak-type (1, 1) and of

weak-type (2, 2) on bounded, compactly supported functions, we may apply

the interpolation theorem. First note that T is linear and hence subadditive

on bounded, compactly supported functions. Given such a function f , we

can write f = f1 + f2 as in the proof of Theorem 4.6, and f1, f2 are also

bounded and compactly supported. Then T satisfies the weak-type (1, 1)

inequality for f1 and the weak-type (2, 2) inequality for f2. Looking at the

proof of Theorem 4.6, we see that this is all that is needed to conclude that

‖Tf‖p ≤ Ap‖f‖p for 1 < p < 2, where Ap depends only on B, p, and n.

We turn to the case where 2 < p <∞.

Theorem 5.2. Suppose that T is as in Theorem 5.1, and additionally sat-

isfies the conditions (iv) and (v) discussed at the beginning of this section.

Then in addition to satisfying the conclusion of Theorem 5.1, T is of type

(p, p) for 2 < p <∞. That is, T is of type (p, p) for all p ∈ (1,∞).

Proof. Let f ∈ Cc(Rn,H1). By Theorem 4.10,

‖Tf‖p = sup
g∈Cc(Rn,H2)
‖g‖q=1

∣∣∣ ∫
Rn

〈Tf(x), g(x)〉 dx
∣∣∣.

By the Cauchy-Schwarz inequality,

|〈Tf(x), g(x)〉| = |〈f(x), T ∗g(x)〉| ≤ ‖f(x)‖‖T ∗g(x)‖.

Thus by Hölder’s inequality,∫
Rn

|〈Tf(x), g(x)〉| dx ≤
∫
Rn

‖f(x)‖‖T ∗g(x)‖ dx ≤ ‖f‖p‖T ∗g(x)‖q.

Now since T satisfies (v), and 1 < q < 2, we have

‖T ∗g(x)‖q ≤ Aq‖g‖q,
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where Aq depends only on B′, p, and n. Putting these facts together we get∫
Rn

|〈Tf(x), g(x)〉| dx ≤ Aq‖g‖q‖f‖p.

Taking the supremum yields the desired type (p, p)-inequality for continuous,

compactly supported functions:

‖Tf‖p ≤ Aq‖f‖p.

Extending by continuity to all of Lp yields the result.
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6 Conclusion

We have seen that the Bochner integral is the natural extension of the

Lebesgue integral for vector-valued functions, in that it is the unique continu-

ous map defined on simple functions in the same way as the Lebesgue integral.

Important results such as Hölder’s inequality, the Dominated Convergence

Theorem, and Fubini’s theorem were seen to carry over to the vector-valued

setting. We saw that the Fourier transform can be defined in the obvious

way with the Bochner integral.

The notion of weak measurability proved useful for establishing the mea-

surability of functions of the form K(·)f(·), where K is an operator-valued

function and f is a vector-valued function. This allowed us to define con-

volution for vector-valued functions. Weak measurability was also useful in

proving the vector-valued version of Fubini’s theorem.

When we tried to prove a vector-valued version of a theorem about sin-

gular integrals with the Bochner integral, we saw that certain results do not

carry over easily to the vector-valued setting. As discussed in our introduc-

tion, the Lp duality theorem invoked in the proof of the singular integral

theorem may not hold for vector-valued functions; the proof presented in

Chapter 4 of the weaker version of the Lp duality theorem is more involved

than the proof of the analogous scalar-valued result. I do not know whether

anyone has proven a stronger vector-valued Lp duality theorem, or whether

a stronger version can be proved.

We could not directly imitate the proof found in Stein [10] of the singular

integral theorem, and to achieve the same conclusion for vector-valued func-

tions we needed to modify and supplement the hypotheses. I do not know

whether an elegant version of the theorem exists for vector-valued functions.2

2An elegant version may be found in [6] or [7]. (The section on vector-valued singular

integrals given there looked unfamiliar to me when I first saw it, and I failed to recognize

that it was indeed a solution to the problem.)
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Appendices

A Dense Subspaces

Given a Banach space X , recall that the set FX of simple functions in X is

the set of functions of the form
∑m

j=1 χEj
xj, where m(Ej) <∞ and xj ∈X

for all j = 1, 2, . . . ,m. In Theorem 2.5 we showed that when X is separable,

FX is dense in L1(Rn,X ). We now prove that the density of FX is not

specific to L1, but is true of Lp for p < ∞. We follow the proof given in

Grafakos ([6], pp. 323–324).

Proposition A.1. Let X be a separable Banach space. The set of simple

functions FX is dense in Lp(Rn,X ), 0 < p < ∞. When p = ∞, the set

of functions of the form
∑∞

j=1 χEj
xj, where {Ej}∞j=1 is a partition of Rn and

xj ∈X , is dense in L∞(Rn,X ).

Proof. We first treat the case p < ∞. Let f ∈ Lp, and let ε > 0. Since

f ∈ Lp, there exists a compact subset K ⊂ Rn such that∫
Rn\K

‖f(x)‖pX dx <
εp

3
.

Let {xj}∞j=1 be a countable, dense subset of X , and let Bj denote the

open ball of radius ε
(
3m(K)

)−1/p
centred at xj. Now set A1 = B1, and for

j > 1 set Aj = Bj \
⋃j−1
i=1 Bi. Thus the Aj are pairwise disjoint, and

∞⋃
j=1

Aj =
∞⋃
j=1

Bj = X .

We now set Ej = f−1(Aj) ∩K. Then {Ej}∞j=1 is pairwise disjoint and K =⋃∞
j=1Ej, whence

∞∑
j=1

m(Ej) = m(K) <∞.
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It follows that for some m ∈ N,∫
⋃∞

j=m+1 Ej

‖f(x)‖pX dx <
εp

3
.

Note that

‖f(x)− xj‖X < ε
(
3m(K)

)−1/p
whenever x ∈ Ej. (45)

Consider the quantity∫
⋃m

j=1 Ej

∥∥∥f(x)−
m∑
j=1

χEj
(x)xj

∥∥∥p
X

dx. (46)

For x ∈
⋃m
j=1Ej we have f(x) = f(x)

∑m
j=1 χEj

(x), and hence

∥∥∥f(x)−
m∑
j=1

χEj
(x)xj

∥∥∥
X

=
∥∥∥ m∑
j=1

χEj
(x)[f(x)−xj]

∥∥∥
X

=
m∑
j=1

χEj
(x)‖f(x)−xj‖X .

Thus we have∫
⋃m

j=1 Ej

∥∥∥f(x)−
m∑
j=1

χEj
(x)xj

∥∥∥p
X

dx =

∫
⋃m

j=1 Ej

( m∑
j=1

χEj
(x)‖f(x)−xj‖X

)p
dx,

and by (45) the right-hand-side of this is bounded by∫
⋃m

j=1 Ej

( m∑
j=1

χEj
(x) · ε

(
3m(K)

)−1/p
)p

dx. (47)

Since the Ej are disjoint,
∑m

j=1 χEj
(x) = χ⋃m

j=1 Ej
(x), and hence (47) becomes

εp

3m(K)

∫
⋃m

j=1 Ej

χ⋃m
j=1 Ej

(x) dx =
εp

3m(K)

∫
⋃m

j=1 Ej

1 dx =
εpm(

⋃m
j=1Ej)

3m(K)
,

and thus we have shown that (46) is less than or equal to εp

3
. Now since
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⋃∞
j=1Ej ∪Kc is a partition of Rn, we have∫

Rn

∥∥∥f(x)−
m∑
j=1

χEj
(x)xj

∥∥∥p
X

dx =

∫
Rn\K

‖f(x)‖pX dx

+

∫
⋃∞

j=m+1 Ej

‖f(x)‖pX dx

+

∫
⋃m

j=1 Ej

∥∥∥f(x)−
m∑
j=1

χEj
(x)xj

∥∥∥p
X

dx

<
εp

3
+
εp

3
+
εp

3
= εp.

It remains only to verify that
∑m

j=1 χEj
(x)xj is (L,BX )-measurable. Note

that each Bj is in BX , and so, therefore, is each Aj. Since K is closed, it

is in L, and therefore by the measurability of f , Ej = f−1(Aj) ∩K is in L.

Thus
∑m

j=1 χEj
(x)xj is in FX , and hence it is measurable.

Now we turn to the statement for p = ∞. Set A1 = B(x1, ε/2), the

open ball centred at x1 with radius ε/2, and for j > 2 set Aj = B(xj, ε/2) \⋃j−1
i=1 B(xi, ε/2). Then the Aj are disjoint, and

X =
∞⋃
j=1

Aj =
∞⋃
j=1

B(xj, ε/2).

Let Ej = f−1(Aj); then {Ej}∞j=1 is a partition of Rn. Consider the function∑∞
j=1 χEj

xj. It follows from the measurability of f that Ej ∈ L for each j ∈
N. This implies that χEj

xj is (L,BX )-measurable for each j, and since the set

of (L,BX )-measurable functions is a vector space, we have that
∑m

j=1 χEj
xj is

measurable for eachm. Since
∑∞

j=1 χEj
xj is the pointwise limit of

∑m
j=1 χEj

xj

as m tends to infinity, we conclude, by Theorem 2.7, that it is measurable.

Finally, since ‖f(x)− xj‖X < ε
2

for x ∈ Ej, j ≥ 1, we have

∥∥∥f − ∞∑
j=1

χEj
xj

∥∥∥
L∞(Rn,X )

=
∥∥∥ ∞∑
j=1

χEj
[f − xj]

∥∥∥
L∞(Rn,X )

≤ ε

2
< ε.
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We wish to show that Cc(Rn,X )—the space of continuous, compactly

supported functions from Rn into X —is dense in Lp(Rn,X ). We require

a preliminary proposition, and for this proposition we need a version of

Urysohn’s lemma:

Lemma A.2 (Urysohn’s lemma). If K ⊂ U ⊂ Rn, where K is compact and

U is open, then there exists a continuous function f : Rn → [0, 1] such that

f = 1 on K and f = 0 outside a compact subset of U .

For a proof of Urysohn’s lemma see Folland [5], p. 131.

Proposition A.3. Characteristic functions of Lebesgue measurable sets can

be approximated in Lp(Rn,C) by continuous, compactly supported functions.

Proof. Let E be Lebesgue measurable, and let ε > 0. By the outer regularity

of the Lebesgue measure there is an open set U ⊃ E such that

m(U)−m(E) <
εp

2
, (48)

and by the inner regularity there is a compact set K ⊂ E such that

m(E)−m(K) <
εp

2
. (49)

Adding (48) and (49) we get

m(U)−m(K) < εp.

Now by Urysohn’s lemma there exists a continuous, compactly supported

function ψ such that

χK ≤ ψ ≤ χU .

From this, together with

χK ≤ χE ≤ χU , (50)

it follows that

χK − χU ≤ ψ − χE ≤ χU − χK ,

65



that is,

|ψ − χE| ≤ χU − χK = χU\K .

Hence,

‖ψ − χE‖p ≤ ‖χU\K‖p = (m(U)−m(K))1/p < ε.

Theorem A.4. When 1 ≤ p <∞, Cc(Rn,X ) is dense in Lp(Rn,X ).

Proof. Let f ∈ Lp(Rn,X ). By Proposition A.1 there exists φ =
∑m

j=1 χEj
xj ∈

FX such that

‖f − φ‖p <
ε

2
. (51)

By Proposition A.3 we may, for each j = 1, 2, . . . ,m, choose a function

ψj ∈ Cc(Rn,C) such that

‖χEj
− ψj‖p <

ε

2‖xj‖m
.

Let g =
∑m

j=1 ψjxj. We have

‖φ− g‖p =
∥∥∥ m∑
j=1

χEj
xj −

m∑
j=1

ψjxj

∥∥∥
p

≤
m∑
j=1

‖(χEj
− ψj)xj‖p.

Now

‖(χEj
− ψj)xj‖p =

(∫
‖(χEj

− ψj)xj‖pX
)1/p

=
(∫
|(χEj

− ψj)|p‖xj‖pX
)1/p

= ‖xj‖X ‖χEj
− ψj‖p.

Therefore,

‖φ− g‖p ≤
m∑
j=1

‖xj‖X ‖χEj
− ψj‖p <

m∑
j=1

ε

2‖xj‖m
· ‖xj‖ =

ε

2
. (52)
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Putting (51) and (52) together we get

‖f − g‖q ≤ ‖f − φ‖q + ‖φ− g‖q < ε.
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