
Notes and calculations for Keith Taylor’s
C∗-Algebras of Crystal Groups

(in progress)

Tom Potter

We first verify that with regard to the action of D on A we have

d−1 · a = γ(d)−1aγ(d) (1)

for any d ∈ D. Recall that the action of D on A is given by d · a = γ(d)aγ(d)−1. It

follows from this that

d−1 · a = γ(d−1)aγ(d−1)−1.

Note that

γ(d)γ(d−1) = γ(dd−1)α(d, d−1) = γ(e)α(d, d−1) = eGα(d, d−1) = α(d, d−1),

where eG denotes the identity in G. It follows that

γ(d−1) = γ(d)−1α(d, d−1),

whence

γ
(
d−1
)−1

= α
(
d, d−1

)−1
γ(d) (2)

for all d ∈ D. The above equation will be used frequently. With this equation we

see that

d−1 · a = γ(d−1)aγ(d−1)−1

= γ(d)−1α(d, d−1)aα
(
d, d−1

)−1
γ(d)

= γ(d)−1α(d, d−1)α
(
d, d−1

)−1
aγ(d)

= γ(d)−1aγ(d),

where we have used the fact that A is abelian.
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We also record for future reference that

α(b, eD) = α(eD, b) = eG for all b ∈ D,

where eD denotes the identity of D; this follows trivially from the fact that γ(eD) =

eG.

Page 513, first and fourth paragraphs; and Page 517, second paragraph

Let N ⊂ G be a normal subgroup of finite index. On page 517 we have an

isomorphism U : L2(G) →
⊕

d∈D L
2(N) by (Ug)d(t) = g(γ(d)t) for t ∈ N, d ∈ D,

and g ∈ L2(G). This map is well-defined because G =
⋃̇
d∈Dγ(d)N . This choice of

notation is not optimal since U has been used elsewhere, so we will instead call this

map θ.

So we have the isomorphism θ : L2(G)→
⊕

d∈D L
2(N) where θg =

(
(θg)d

)
d∈D is

given by (θg)d(t) = g
(
γ(d)t

)
. In the paper the map θ is almost always suppressed

by using the notation θg = (gd)d∈D where gd is defined by gd(t) = g
(
γ(d)t

)
; in other

words, we write (θg)d(t) = gd(t); we will suppress the θ in these notes as well. We

note that we can make the same definition for g ∈ Lp(G) for other p values, and

Proposition 0.1. For 1 ≤ p ≤ ∞,

g ∈ Lp(G) ⇐⇒ gd ∈ Lp(N) for all d .

We will have more to say about the isomorphism θ presently, and we will prove

the above easy proposition. We note in passing that

g
(
γ(d)t

)
= g(d, t) = gd(t)

in the notation of the paper, for g : G → C; there is, however, a minor notational

inconsistency in the third paragraph of page 513, of which the reader should be

careful.

We note that for any g ∈ L2(G) we have g =
∑

c∈D g̃c, where g̃c ∈ L2(G) is given

by

g̃c(t) =

{
g(t) if t ∈ γ(c)N

0 otherwise

}
= g(t)1γ(c)N(t)
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for all g ∈ G. We note that g̃c is not to be confused with gc; however, the two are

related: we have, for any n ∈ N ,

g̃b
(
γ(c)n

)
=

{
g
(
γ(c)n

)
if c = b

0 otherwise

}

=

{
gc(n) if c = b

0 otherwise

}
= gb(n)δbc.

Hence (g̃b)c(n) = gb(n)δbc for all n ∈ N ; ie,

(g̃b)c = gbδbc . (3)

We now prove the simple proposition given above: suppose first that 1 ≤ p <∞; if

g ∈ Lp(G) then gd(t) = g
(
γ(d)t

)
, and hence∫

N

|gd(t)|p dt =

∫
N

|g
(
γ(d)t

)
|p dt ≤

∫
G

|g
(
γ(d)t

)
|p dt <∞,

and therefore gd ∈ Lp(N) for each d. Conversely, if gd ∈ Lp(N) for each d ∈ D, then∫
G

|g(t)|p dt =

∫
G

∣∣∣∑
c∈D

g̃c(t)
∣∣∣p dt =

∫
G

∣∣∣∑
c∈D

g(t)1γ(c)N(t)
∣∣∣p dt =

∫
G

∑
c∈D

|g(t)|p1γ(c)N(t) dt.

By linearity of the integral this becomes∑
c∈D

∫
γ(c)N

|g(t)|p dt =
∑
c∈D

∫
N

|g
(
γ(c)t

)
|p dt =

∑
c∈D

∫
N

|gc(t)|p dt <∞.

Note that this works because N is of finite index in G. This proves our little propo-

sition for 1 ≤ p < ∞, and the case p = ∞ is trivial. In these notes we are only

interested in p = 1, 2.

Remark 0.2. We are now in a position to describe more explicitly the inverse of

the map θ discussed earlier. We claim that for (gd)d∈D ∈ H =
⊕

d∈D L
2(N),

θ−1
[
(gd)d∈D

]
=
∑
d∈D

g̃d ∈ L2(G) , (4)
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where g̃d is as above with g is defined by g
(
γ(d)t

)
= gd(t). Since θ is easily seen to

be a linear bijection, it does indeed have an inverse. And[
θ
(∑
c∈D

g̃c

)]
d
(t) =

[∑
c∈D

θg̃c

]
d
(t) =

∑
c∈D

(
θg̃c
)
d
(t)

for all t ∈ N , and recalling our notational suppression of θ this becomes∑
c∈D

(g̃c)d(t) =
∑
c∈D

gc(t)δcd = gd(t) =
(
θg
)
d
(t).

Hence θ
(∑

c∈D g̃c

)
= θ(g) = (gd)d∈D and therefore formula (4) is justified.

We can analyze θ in even greater detail by expressing it as a composition: first

define, for any d ∈ D,

L2
d(N) =

{
g ∈ L2(G) : supp(g) ⊂ γ(d)N

}
.

We denote the map g 7→
(
θg
)
d

from L2(G) to L2(N) by θd. Then it’s easy to see that

θd
∣∣
L2
d(G)

is an isomorphism from L2
d(G) onto L2(N). With the natural inner product

on L2(G), we can recognize it as the internal direct sum of the mutually orthogonal

subspaces L2
d(G), ie the space of all sums {

∑
d∈D g̃d : g̃d ∈ L2

d(G)}, which is just

the closed linear span
∨
d∈D L

2
d(G). We know from Hilbert space theory that each

g ∈ L2(G) can be written uniquely in this form. We also know that this internal direct

sum is isomorphic to the external direct sum
⊕

d∈D L
2
d(G) = {(g̃d)d∈D : g̃d ∈ L2

d(G)}.
Let’s call this isomorphism δ; this is just the map which sends

∑
d∈D g̃d to (g̃d)d∈D.

Then θ is the composition

L2(G) =
∨
d∈D

L2
d(G)

δ→
⊕
d∈D

L2
d(G)

⊕
θd|L2

d
(G)

→
⊕
d∈D

L2(N).

We see from this that

θg̃d = (gcδcd)c∈D ∈
⊕
d∈D

L2(N) ,

which recaptures (3) and, by linearity of θ, gives another proof of (4). For our

purposes it is helpful to have all these maps explicitly at hand, so that we can use

them with confidence in doing calculations.
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Returning to page 513 of the paper, we recall the map in the paper given by

Ψg =
(
ĝd
)
d∈D. This can be written as the composition

g (gd)d∈D (ĝd)d∈D
θ

⊕
P

Ψ

where P : L2(A) → L2(Â) is the Fourier transform, where A ⊂ G is an abelian

normal subgroup of finite index. In the notation established, (Ψg)d = ĝd.

Page 513 lines 13-14: Up to isomorphism G = {(d, a) : d ∈ D, a ∈ A} with

group product (b, a)(c, a′) = (bc, α(b, c)(c−1 · a)a′).

Remark 0.3. First note that this product is almost a semidirect product—it is off

by a cocycle factor; it could be called a “quasi-semidirect product”. We can write

the product in the notation(
γ(b)a

)(
γ(c)a′

)
= γ(bc)α(b, c)(c−1 · a)a′,

and then for any γ(b)a ∈ G we have(
γ(b)a

)−1
= a−1γ(b)−1. (5a)

If we wish, however, to write the inverse in the notation of the quasi-semidirect

product we can write

(b, a)−1 =
(
b−1, [γ(b)aγ(b−1)]−1

)
. (5b)

Equations (5) still hold when A is not abelian, but the original group product formula

must be written in the less concise form

(b, a)(c, a′) =
(
bc, α(b, c)

(
γ(c)−1aγ(c)

)
a′
)

in this case.
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Page 513, lines 26–28: For F = (Fb,c)b,c∈D in Mn

(
C0(Â)

)
define M(F ) in

B(H) by for h = (hc)c∈D,
(
M(F )h

)
b

=
∑

c∈D Fb,chc. Then M is a C∗-isomorphism

of Mn

(
C0(Â)

)
into B(H).

Check: We use slightly different notation. To see that M is linear is trivial.

That M is injective is also easy: if M(F ) = 0, that means M(F )h = 0 for all

h ∈ H =
⊕

c∈D L
2(Â), ie∑

c∈D

Fb,chc = 0 for all h ∈ H and all b ∈ D.

We can choose h such that hd ∈ L2(Â) and hd is nonzero everywhere on Â, and

hc = 0 if c 6= d. Then it follows from the above that Fb,d = 0 for all b ∈ D. Since we

can do this for any d ∈ D it follows that all the components of F are 0, ie F = 0.

We check that M is multiplicative. We have(
M(F )

(
M(G)h

))
d

=
∑
b∈D

Fd,b
(
M(G)h

)
b

=
∑
b∈D

Fd,b

(∑
c∈d

Gb,chc

)
=
∑
b∈D

∑
c∈D

Fd,bGb,chc

=
∑
c∈D

∑
b∈D

Fd,bGb,chc

=
∑
c∈D

(FG)d,chc

=
(
M(FG)h

)
d
.

We check lastly that M is involutive. If F ∈ Mn

(
C0(Â)

)
then we can write F

as a linear combination of its real and imaginary parts: F = ReF + ıImF , whence

F = ReF − ıImF , where ReF and ImF are self-adjoint. We can also write

M(F ) = Re
(
M(F )

)
+ ıIm

(
M(F )

)
,

because H is a complex Hilbert space. If we can show thatM takes self-adjoint ele-

ments of Mn

(
C0(Â)

)
to self-adjoint elements of B(H), then it follows from linearity of

6



M that Re
(
M(F )

)
=M(ReF ) and Im

(
M(F )

)
=M(ImF ), because a bounded lin-

ear operator can be written uniquely as a linear combination of self-adjoint bounded

linear operators. Hence M(F ) =M(F ), where

M(F ) = Re
(
M(F )

)
− ıIm

(
M(F )

)
.

So let G ∈Mn

(
C0(Â)

)
be a real-valued symmetric matrix, ie let G be self-adjoint in

Mn

(
C0(Â)

)
. We check that M(G) is self-adjoint in B(H). Let g, h ∈ H. We have〈

M(G)g, h
〉

=
∑
d∈D

〈(
M(G)g

)
d
, hd
〉

=
∑
d∈D

〈∑
c∈D

Gd,cgc, hd

〉
=
∑
d∈D

∑
c∈D

〈Gd,cgc, hd〉.

Now switching the order of summation and using the fact that G is real and sym-

metric this becomes ∑
c∈D

∑
d∈D

〈gc, Gc,dhd〉

=
∑
c∈D

〈
gc,
∑
d∈D

Gc,dhd

〉
=
∑
c∈D

〈
gc,
(
M(G)h

)
c

〉
=
〈
g,M(G)h

〉
ThusM(G) is self-adjoint whenever G is, and the argument made above verifies that

M is involutive, ie is a ∗-homomorphism.

NOTE: The definition ofM really just says thatM(F ) is the element of B
(⊕

c∈D L
2(Â)

)
whose matrix components are the entries of the matrix F . See §2.6 of Kadison and

Ringrose for a good discussion on matrix components of operators on a direct sum.

Many of the calculations shown here can be presented more cleanly (fewer sums)

using matrix components, and some checking is rendered unnecessary (eg., checking

that M is multiplicative).
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Page 513, Proposition 1: For each f ∈ L1(G), ΨλGf Ψ−1 is in the range ofM.

Let F(f) =M−1(ΨλGf Ψ−1). Then F extends to a C∗-isomorphism of C∗(G) onto a

C∗-subalgebra of Mn

(
C0(Â)

)
.

Check. We consider the second statement of the theorem, which follows from

the first, which we will assume for now. Recall that

C∗λ(G) = λG
(
L1(G)

)‖·‖
where the closure is taken in B

(
L2(G)

)
, and that C∗λ(G) ∼= C∗(G) since G is

amenable. We know that ΨλG
(
L1(G)

)
Ψ−1 is contained in the C∗-algebraM

(
Mn

(
C0(Â)

))
⊂

B(H) and that ΨλGf Ψ−1 is a unitary operator in B(H) for each f ∈ L1(G) (the de-

tails are routine here). Note that here the map F does not itself extend to a C∗-

isomorphism, since the closure of L1(G) is not a C∗-algebra; rather, what is meant

is that the map φ : λG
(
L1(G)

)
→Mn

(
C0(Â)

)
given by λG(f) 7→ M−1

(
ΨλG(f)Ψ−1

)
extends to a C∗-isomorphism from C∗λ(G) onto a subalgebra of Mn

(
C0(Â)

)
. SinceM

is a C∗-isomorphism it suffices to check that the convolution map φ : T → ΨTΨ−1

on B(H) is a C∗-isomorphism, ie, that it is linear, multiplicative, isometric, and

involutive. Linearity follows simply from the linearity of Ψ. Multiplicativity is also

easy:

φ(AB) = ΨghΨ−1 = ΨAΨ−1ΨBΨ−1 = φ(A)φ(B).

To see that φ is isometric we use the fact that Ψ is an isometric isomorphism to get

‖φ(T )‖ = ‖ΨTΨ−1‖

= ‖TΨ−1‖

= sup{‖TΨ−1h‖ : h ∈ H, ‖h‖ = 1}

= sup{‖Tf‖ : f ∈ L2(G), ‖f‖ = 1}

= ‖T‖,

whence φ is isometric.

To see that φ is involutive, we write T as ReT + ıImT , where ReT and ImT are

self-adjoint, so that T ∗ = ReT − ıImT . We check that φ takes self-adjoint elements
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to self-adjoint elements in B(H). That φ is involutive will then follow from linearity

of φ and the existence of a unique representation of elements of B(H) as a linear

combination of self-adjoint elements.

Let S be self-adjoint in B(H). Then since Ψ is unitary, Ψ∗ = Ψ−1, whence

φ(S)∗ = (ΨSΨ−1)∗ =
(
Ψ−1

)∗
S∗Ψ∗ = ΨSΨ−1 = φ(S).

Page 514, line 5: Should read hd ∈ L2(A).

Page 514, lines 9–10:∑
c∈D

∫
A

f(c, a)h
(
(c, a)−1(d, a′)

)
da

=
∑
c∈D

∫
A

fc(a)h
(
c−1d, α(c, c−1d)−1[(d−1c) · a−1]a′

)
da

Check. This boils down to showing

(c, a)−1(d, a′) =
(
c−1d, α(c, c−1d)−1[(d−1c) · a−1]a′

)
.

Recall that G has group product

(b, a)(c, a′) =
(
bc, α(b, c)

(
γ(c)−1aγ(c)

)
a′
)

and inverse

(b, a)−1 =
(
b−1, [γ(b)aγ(b−1)]−1

)
.

So

(c, a)−1(d, a′) =
(
c−1, [γ(c)aγ(c−1)]−1

)
(d, a′)

=
(
c−1d, α(c−1, d)

(
γ(d)−1[γ(c)aγ(c−1)]−1γ(d)

)
a′
)

=
(
c−1d, α(c−1, d)γ(d)−1γ(c−1)−1a−1γ(c)−1γ(d)a′

)
=
(
c−1d, α(c−1, d)

(
γ(c−1)γ(d)

)
a−1γ(c)−1γ(d)a′

)
=
(
c−1d, α(c−1, d)

(
γ(c−1d)α(c−1, d)

)
a−1γ(c)−1γ(d)a′

)
=
(
c−1d, γ(c−1d)a−1γ(c)−1γ(d)a′

)
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Now observe that

γ(c)γ(c−1d) = γ(cc−1d)α(c, c−1d) = γ(d)α(c, c−1d),

and thus

γ(c)−1γ(d)α(c, c−1d) = γ(c−1d),

and hence

γ(c)−1γ(d) = γ(c−1d)α(c, c−1d)−1.

Therefore

(c, a)−1(d, a′) =
(
c−1d, γ(c−1d)−1a−1γ(c−1d)α(c, c−1d)−1a′

)
=
(
c−1d, (d−1c) · a−1α(c, c−1d)−1a′

)
=
(
c−1d, α(c, c−1d)−1(d−1c) · a−1a′

)
,

where we have used the fact that A is abelian. This proves the desired equality.

Remark 0.4. Note that we did not need to use the cocycle identity in the above.

We also note that the remaining calculations in the integral on p. 514 follow from

translation-invariance of the integral.

Page 514, lines 17–19 showing that ΨλGf Ψ−1 is in the range of M.

Check. We define a matrix M by Md,c = η̂dc−1,d, where η is defined by

ηc,d(a) = fc
(
(c−1d) · (α(c, c−1d)−1a)

)
for each a ∈ A.

Then (
M(M)h

)
d

=
∑
c∈D

Md,cP(hc) =
∑
c∈d

η̂dc−1,dP(hc).

From Proposition 2 proof: Check: Let g ∈ L2(G), and let h = Ψg. We

use Proposition 1 from the paper, but with slightly different notation. For

f ∈ L1(G) we define ηc,d ∈ L1(A) to be a function equal to fc
(
(c−1d)·

(
α(c, c−1d)−1a

))
for almost every a ∈ A. We have(

(ΨλGf Ψ−1)(h)
)
d

=
(
(ΨλGf )(g)

)
d

=
(
Ψ
(
λGf (g)

))
d

=
(
Ψ(f ∗ g)

)
d
.
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By Proposition 1 in the paper the above is equal to∑
c∈D

η̂dc−1,dP(gc) =
∑
c∈D

η̂dc−1,dP(Ψ−1h)c

=
∑
c∈D

η̂dc−1,dP(P−1hc)

=
∑
c∈D

η̂dc−1,dhc.

Defining M ∈Mn

(
C0(Â)

)
by Mc,d = η̂dc−1,d, this becomes∑

c∈D

Md,chc =
(
M(M)h

)
d
.

Altogether we have

ΨλGf Ψ−1h =M(M)h for all h ∈ H =
⊕
c∈D

L2(Â),

ie ΨλGf Ψ−1 =M(M), or

M =M−1
(
ΨλGf Ψ−1

)
= F(f).

Therefore F(f)b,c = Mb,c = η̂cb−1,b. In particular, F(f)b,e = η̂be−1,b = η̂b,b. For a.e.

a ∈ A we have that ηb,b(a) = fb
(
(b−1b) ·

(
α(b, b−1b)−1a

))
= fb(a). Thus F(f)b,e = f̂b,

which is the formula in line 27 of p. 515.

Page 514, the formula in Proposition 2: Check. We know that
(
F(f)

)
b,c

=

η̂bc−1,b. Using the translation-invariance of the integral we calculate

η̂c,d(χ) =

∫
A

fc
(
(c−1d) · α(c, c−1d)−1a

)
χ(a) da

=

∫
A

fc
(
(c−1d) · a

)
χ
(
α(c, c−1d)a

)
da

= χ
(
α(c, c−1d)

) ∫
A

fc
(
(c−1d) · a

)
χ(a) da,
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since χ is a homomorphism. This becomes

χ
(
α(c, c−1d)

) ∫
A

fc(a)χ
(
(c−1d)−1 · a

)
da

= χ
(
α(c, c−1d)

) ∫
A

fc(a)
(
(c−1d) · χ)

)
(a) da

= χ
(
α(c, c−1d)

)
f̂c
(
(c−1d) · χ

)
.

Page 515, line 11: Then, for any y ∈ G and f ∈ L1(G), ρ(y)λGf ρ(y)∗ = λGf . Thus(
F(f)

)
b,c

(χ) = η̂bc−1,b(χ)

= χ
(
α(bc−1, cb−1b)

)
f̂bc−1

(
((bc−1)−1b) · χ

)
= χ

(
α(bc−1, c)

)
f̂bc−1(c · χ),

which is the formula in Proposition 2.

Check: This is easy. Recall that λGf ∈ B
(
L2(G)

)
is defined by λGf (g) = f ∗ g, for

all g ∈ L2(G). We sometimes write λGf = λG(f); then λG : L1(G)→ B
(
L2(G)

)
. The

map ρ is the unitary operator on L2(G) given by ρ(y)g(x) = g(xy) for all x, y ∈ G.

We also have ρ(y)−1 = ρ(y−1) for any y ∈ G, because ρ is a homomorphism. We now

calculate:

[ρ(y)λGf ρ(y)∗]g(x) =
(
ρ(y)λGf

)
g(xy−1)

= ρ(y)
(
λGf (g)

)
(xy−1)

= ρ(y)(f ∗ g)(xy−1)

= (f ∗ g)(xy−1y)

= (f ∗ g)(x)

= λGf (g)(x).

So ρ(y)λGf ρ(y)∗g = λGf g for all g ∈ L2(G), and hence ρ(y)λGf ρ(y)∗ = λGf for all y ∈ G,

as desired.

Page 515, lines 13–14: for any b ∈ D and χ ∈ Â,(
U(d)h

)
b
(χ) = d−1 · χ(α(b, d))hbd(d

−1 · χ),
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where h ∈ H =
⊕

d∈D L
2(Â).

Check: Recall that in the paper ρ is the right regular representation of G on

L2(G), ie, ρ(y)g(x) = g(xy) for g ∈ L2(G), x, y ∈ G. Recall that the map U is

defined by

U(d) = Ψρ
(
γ(d)

)
Ψ−1 ∈ B

(⊕
d∈D

L2(Â)
)

for each d ∈ D. We let g = Ψ−1h ∈ L2(G). From what we have established previously

we know that for b ∈ D we have[
Ψ[ρ
(
γ(d)

)
Ψ−1h]

]
b

= P
[(
ρ
(
γ(d)

)
Ψ−1h

)
b

]
= P

[(
ρ
(
γ(d)

)
g
)
b

]
Note that for a ∈ A and b ∈ D we have[

ρ
(
γ(d)

)
g
]
b
(a) = ρ

(
γ(d)

)
g
(
γ(b)a

)
= g
(
γ(b)aγ(d)

)
= g
(
γ(b)γ(d) γ(d)−1aγ(d)︸ ︷︷ ︸

=d−1·a

)
= g
(
γ(bd)α(b, d)d−1 · a

)
.

Putting these together we have[
Ψρ
(
γ(d)

)
Ψ−1h

]
b
(χ) =

∫
A

[
ρ
(
γ(d)

)
g
]
b
(a)χ(a) da

=

∫
A

g
(
γ(bd)α(b, d)d−1 · a

)
χ(a) da

=

∫
A

gbd
(
α(b, d)(d−1 · a

)
)χ(a) da

=

∫
A

gbd
(
α(b, d)a

)
χ(d · a) da,

where the last inequality follows from the translation-invariance of the Haar integral.

Recall that the action of D on A induces an action on Â given by (d·χ)(a) = χ(d−1·a).
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With this and further use of translation-invariance the above becomes∫
A

gbd
(
α(b, d)a

)
(d−1 · χ)(a) da =

∫
A

gbd(a)(d−1 · χ)
(
α(b, d)−1a

)
da

= (d−1 · χ)
(
α(b, d)−1

) ∫
A

gbd(a)(d−1 · χ)(a) da

= (d−1 · χ)
(
α(b, d)−1

)(
P(gbd

)
(d−1 · χ)

= (d−1 · χ)
(
α(b, d)

)
hbd(d

−1 · χ).

Putting these together completes the calculation.

Page 515, line 15(
U(d)∗h

)
b
(χ) = χ

(
α(bd−1, d)

)
hbd−1(d · χ).

Check: The calculation is similar to the previous one, but more involved. Since

each of the maps making up U(d) is unitary we have

U(d)∗ = U(d)−1 = Ψρ
(
γ(d)

)−1
Ψ−1;

since ρ : G→ B(L2(G)) is a homomorphism, the above becomes

U(d)∗ = U(d)−1 = Ψρ
(
γ(d)−1

)
Ψ−1.

As in the previous calculation we let h ∈ H =
⊕

d∈D L
2(Â) and g = Ψ−1h ∈ L2(G).

We have [
Ψ[ρ
(
γ(d)−1

)
Ψ−1h]

]
b

= P
[(
ρ
(
γ(d)−1

)
Ψ−1h

)
b

]
= P

[(
ρ
(
γ(d)−1

)
g
)
b

]
Note that for a ∈ A and b ∈ D we have[

ρ
(
γ(d)−1

)
g
]
b
(a) = ρ

(
γ(d)−1

)
g
(
γ(b)a

)
= g
(
γ(b)aγ(d)−1

)
= g
(
γ(b)γ(d)−1 γ(d)aγ(d)−1︸ ︷︷ ︸

d·a

)
.
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If we recall our formula for γ(d)−1 the above becomes

g
(
γ(b)γ(d−1)α(d, d−1)−1d · a

)
= g
(
γ(bd−1)α(b, d−1)α(d, d−1)−1d · a

)
= gbd−1

(
α(b, d−1)α(d, d−1)−1d · a

)
.

Putting these together and using the translation-invariance of the integral as before

we have[
Ψρ
(
γ(d)−1

)
Ψ−1h

]
b
(χ) =

∫
A

[
ρ
(
γ(d)−1

)
g
]
b
(a)χ(a) da

=

∫
A

gbd−1

(
α(b, d−1)α(d, d−1)−1d · a

)
χ(a) da

=

∫
A

gbd−1

(
α(b, d−1)α(d, d−1)−1a

)
χ(d−1 · a) da

=

∫
A

gbd−1

(
α(b, d−1)α(d, d−1)−1a

)
(d · χ)(a) da

=

∫
A

gbd−1(a)(d · χ)
(
α(d, d−1)α(b, d−1)−1a

)
da

= (d · χ)
(
α(d, d−1)α(b, d−1)−1

) ∫
A

gbd−1(a)(d · χ)(a) da

= (d · χ)
(
α(d, d−1)α(b, d−1)−1

)
hbd−1(d · χ).

Now

(d · χ)
(
α(d, d−1)α(b, d−1)−1

)
= χ

(
d−1 · [α(d, d−1)α(b, d−1)−1]

)
= χ

(
γ(d)−1α(d, d−1)α(b, d−1)−1γ(d)

)
.

It is easy to verify that

α(d, d−1) = γ(d)α(d−1, d)γ(d)−1,

whence

γ(d)−1α(d, d−1) = α(d−1, d)γ(d)−1.
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Thus

(d · χ)
(
α(d, d−1)α(b, d−1)−1

)
= χ

(
α(d−1, d)γ(d)−1α(b, d−1)−1γ(d)

)
= χ

(
α(d−1, d)[γ(d)−1α(b, d−1)γ(d)]−1

)
= χ

(
α(b, eD)α(d−1, d)[d−1 · α(b, d−1)]−1

)
= χ

(
α(b, d−1d)α(d−1, d)[d−1 · α(b, d−1)]−1

)
= χ

(
α(bd−1, d)

)
,

where in the third equality we use the fact that α(b, eD) = eG, and in the last equality

we have used the cocycle identity. This completes the calculation.

Page 515, lines 15–16 For F = (Fb,c)b,c∈D in Mn

(
C0(Â)

)
,

[U(d)M(F )U(d)∗h]b(χ) =
∑
c∈D

(d−1 · χ)
(
α(b, d)−1α(c, d)

)
Fbd,cd(d

−1 · χ)hc(χ).

Check: We simply apply the maps. We recall thatM : Mn

(
C0(Â)

)
→ B

(⊕
d∈D L

2(Â)
)

is defined for each F = (Fb,c)b,c∈D in Mn

(
C0(Â)

)
by
(
M(F )h

)
b

=
∑

c∈D Fb,chc, for

each h ∈
⊕

d∈D L
2(Â). For such h and F we have(

M(F )U(d)∗h
)
b
(χ) =

(∑
c∈D

Fb,c
(
U(d)∗h

)
c

)
(χ)

=
∑
c∈D

Fb,c(χ)
(
U(d)∗h

)
c
(χ)

=
∑
c∈D

Fb,c(χ)χ
(
α(cd−1, d)

)
hcd−1(d · χ).

Thus

[U(d)M(F )U(d)∗h]b(χ) =
[(
U(d)

)(
M(F )U(d)∗h

)]
b
(χ)

= (d−1 · χ)(α(b, d))
(
M(F )U(d)∗h

)
bd

(d−1 · χ)

= (d−1 · χ)(α(b, d)−1)
∑
c∈D

Fbd,c(d
−1 · χ)(d−1 · χ)

(
α(cd−1, d)

)
hcd−1

(
d · (d−1 · χ)

)
.
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If we make the shift of indices {cd : c ∈ D} = {c : c ∈ D}, the above becomes

(d−1 · χ)(α(b, d)−1)
∑
c∈D

Fbd,cd(d
−1 · χ)(d−1 · χ)

(
α(c, d)

)
hc(χ)

=
∑
c∈D

(d−1 · χ)
(
α(b, d)−1α(c, d)

)
Fbd,cd(d

−1 · χ)hc(χ),

where we have used the fact that d−1 · χ is a homomorphism.

Page 515, line 17 Thus conjugation by U(d) leaves the range of M invariant

Check: For h ∈
⊕

d∈D L
2(Â) we must show that we can express [U(d)M(F )U(d)∗h]b

as the bth entry of M(G)h for some G ∈Mn

(
C0(Â)

)
. Comparing the forumlas(

M(F )h
)
b
(χ) =

∑
c∈D

Fb,c(χ)hc(χ)

and

[U(d)M(F )U(d)∗h]b(χ) =
∑
c∈D

(d−1 · χ)
(
α(b, d)−1α(c, d)

)
Fbd,cd(d

−1 · χ)hc(χ),

we see that defining

Gb,c(χ) = (d−1 · χ)
(
α(b, d)−1α(c, d)

)
Fbd,cd(d

−1 · χ) ∈ C0(Â) (6)

then

[U(d)M(F )U(d)∗h]b(χ) = [M(G)h]b(χ)

for all χ ∈ Â and all h, whence

U(d)M(F )U(d)∗h =M(G)h

for all h, ie,

U(d)M(F )U(d)∗ =M(G). (7)

This shows that the range of M is indeed invariant under conjugation by U(d).

Remark 0.5. We note that the above matrix G also gives us the formula in line 19

of the same page. Indeed, we define β : D → Aut
((
Mn

(
C0(Â)

))
by

β(d)(F ) =M−1
(
U(d)M(F )U(d)∗

)
for all F ∈Mn

(
C0(Â)

)
,
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(we verify later that β(d) is in fact an automorphism,) and formula (7) says that

β(d)(F ) = G.

Thus the coefficients of β(d)(F ) are given by (6).

Page 515, lines 19–20 further easy computations show that β is a homomor-

phism of D into the automorphism group of Mn

(
C0(Â)

)
.

Check: We must check that β(d) is injective and surjective for each d ∈ D. We

must check that β(d) is a ring homomorphism. We must also check that β is a group

homomorphism. As before, we let H =
⊕

d∈D L
2(Â). We utilize the fact thatM is a

C∗-isomorphism of Mn

(
C0(Â)

)
into B(H). We show that β(d) is an isometry: since

U(d) is a unitary operator we have

‖β(d)‖ = ‖M−1
(
U(d)M(F )U(d)∗

)
‖

= ‖U(d)M(F )U(d)∗‖

= ‖M(F )U(d)∗‖

= sup{‖M(F )U(d)∗h‖ : h ∈ H, ‖h‖ = 1}

= sup{‖M(F )f‖ : f ∈ L2(G), ‖f‖ = 1}

= ‖M(F )‖.

Thus β(d) is an isometry for each d ∈ D. β(d) is linear because M and U(d) are.

If β(d)(F ) = 0, where 0 is the zero matrix, then M(F ) = 0 and therefore F = 0,

which proves that β(d) is injective. To see that β(d) is surjective, we note that for

any F ∈ Mn

(
C0(Â)

)
we have that F = β(d)[M−1

(
U(d)∗M(F )U(d)

)
]. We verify

that β(d) is multiplicative as follows: for any F,G ∈Mn

(
C0(Â)

)
we have

β(d)(FG) =M−1
(
U(d)M(FG)U(d)∗

)
=M−1

(
U(d)M(F )M(G)U(d)∗

)
=M−1

(
U(d)M(F )U(d)∗U(d)M(G)U(d)∗

)
= β(d)(F )β(d)(G),
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where we have used that M is multiplicative. So β(d) is a bijective ring homomor-

phism from Mn

(
C0(Â)

)
onto itself; ie β(d) is an automorphism of this ring; it is in

fact a ∗-homomorphism, as one can easily verify.

To check that β is a group homomorphism is a little more involved: we first see

how U(bc) comes out: we note that since γ(b)γ(c) = γ(bc)α(b, c), we have γ(bc) =

γ(b)γ(c)α(b, c)−1. Thus

U(bc) = Ψρ
(
γ(bc)

)
Ψ−1

= Ψρ
(
γ(b)γ(c)α(b, c)−1

)
Ψ−1

= Ψρ
(
γ(b)

)
ρ
(
γ(c)

)
ρ
(
α(c, b)−1

)
Ψ−1

= Ψρ
(
γ(b)

)
Ψ−1Ψρ

(
γ(c)

)
Ψ−1Ψρ

(
α(c, b)−1

)
Ψ−1

= U(b)U(c)Ψρ
(
α(c, b)−1

)
Ψ−1.

Thus for each F ∈Mn

(
C0(Â)

)
β(bc)(F ) =M−1

(
U(bc)M(F )U(bc)∗

)
=M−1

[
U(b)U(c)Ψρ

(
α(c, b)−1

)
Ψ−1M(F )Ψρ

(
α(c, b)

)
Ψ−1U(c)∗U(b)∗

]
=M−1

[
U(b)U(c)M(F )U(c)∗U(b)∗

]
=M−1

[
U(b)M

(
M−1

(
U(c)M(F )U(c)∗

))
U(b)∗

]
= β(b)[β(c)(F )]

The above requires verifying a step in greater detail: we claim that for any a ∈ A,

Ψρ(a−1)Ψ−1M(F )Ψρ(a)Ψ−1 =M(F ).

We first observe that for a ∈ A,
(
ρ(a)g

)
c

= ρ(a)gc, because for any x ∈ A,(
ρ(a)g

)
c
(x) =

(
ρ(a)g

)(
γ(c)x

)
= g
(
γ(c)xa

)
= gc

(
xa
)

= ρ(a)gc(x).

So in this case Ψρ(a)Ψ−1 =
⊕
Pρ(a)P−1, and for h = (hc)c∈D ∈ H it suffices to

determine how the above map acts on the bth component hb. We also know from
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Fourier analysis that P [ρ(a)gc](χ) = χ(a)P(gc)(χ), for all χ ∈ Â. If we let g = Ψ−1h,

so that ĝb = hb, then by definition Pρ(a)P−1hb = P
(
ρ(a)gb). Now

[M(F )Ψρ(a)Ψ−1h]b(χ) =
∑
c∈D

Fb,c(χ)[Ψρ(a)Ψ−1h]c(χ)

=
∑
c∈D

Fb,c(χ)Pρ(a)P−1hc(χ)

=
∑
c∈D

Fb,c(χ)P
(
ρ(a)gc)

=
∑
c∈D

Fb,c(χ)χ(a)P(gc)(χ).

We must now apply Pρ(a−1)P−1 to this. We must calculate

P [ρ(a−1)P−1Fb,c(χ)χ(a)(Pgc)(χ)]

First we note that for each ω ∈ A,

P−1
(
Fb,c(χ)χ(a)(Pgc)(χ)

)
(ω) =

∫
Â

Fb,c(χ)χ(a)(Pgc)(χ)χ(ω) dχ.

and hence

ρ(a−1)
[
P−1

(
Fb,c(χ)χ(a)(Pgc)(χ)

)]
(ω)

= P−1
(
Fb,c(χ)χ(a)(Pgc)(χ)

)
(ωa−1)

=

∫
Â

Fb,c(χ)χ(a)(Pgc)(χ)χ(ωa−1) dχ

=

∫
Â

Fb,c(χ)χ(a)(Pgc)(χ)χ(ω)χ(a−1) dχ

=

∫
Â

Fb,c(χ)(Pgc)(χ)χ(ω) dχ

= P−1
(
Fb,c(Pgc)

)
(ω)

= P−1(Fb,chc)(ω)

Therefore taking P of this gives

P [ρ(a−1)P−1Fb,c(χ)χ(a)(Pgc)(χ)] = Fb,chc.
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We have shown that(
Pρ(a−1)P−1

)
[M(F )Ψρ(a)Ψ−1h]b =

∑
c∈D

Fb,chc,

whence

[Ψρ(a−1)ΨM(F )Ψρ(a)Ψ−1h]b =
∑
c∈D

Fb,chc = [M(F )h]b.

This establishes what we wanted to show.

Page 515, line 24 Then, for any f ∈ L1(G), ρ
(
γ(d)

)
λGf ρ

(
γ(d)

)∗
= λGf implies

that F(f) ∈Mn

(
C0(Â)

)D
.

Check: Recall that F was defined from L1(G) to Mn

(
C0(Â)

)
by

F(f) =M−1(ΨλGf Ψ−1)

for f ∈ L1(G), and that it was shown in Proposition 1 that F extends by continuity to

a C∗-isomorphism of C∗(G) onto a C∗-subalgebra of Mn

(
C0(Â)

)
. For any f ∈ L1(G)

we have

F(f) ∈Mn

(
C0(Â)

)D ⇐⇒ β(d)
(
F(f)

)
= F(f) for all d ∈ D.

By definition,

β(d)
(
F(f)

)
= β(d)

(
M−1(ΨλGf Ψ−1)

)
=M−1

[
U(d)M

(
M−1ΨλGf Ψ−1

)
U(d)∗

]
=M−1

[
U(d)ΨλGf Ψ−1U(d)∗

]
.

Since U(d) = Ψρ
(
γ(d)

)
Ψ−1, this becomes

M−1
[
Ψρ
(
γ(d)

)
Ψ−1ΨλGf Ψ−1

(
Ψρ
(
γ(d)

)
Ψ−1

)∗]
=M−1

[
Ψρ
(
γ(d)

)
λGf ρ

(
γ(d)

)∗]
=M−1

(
ΨλGf Ψ−1

)
= F(f),
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as desired.

Pages 515–516, F
(
L1(G)

)
is dense in Mn

(
C0(Â)

)D
.

Check. We examine the first statement, which says that for fixed F ∈Mn

(
C0(Â)

)D
and ε > 0, we can choose δ > 0 so that F ′ ∈Mn

(
C0(Â)

)
with ‖F ′b,c − Fb,c‖∞ < δ for

all b, c ∈ D implies ‖F ′ − F‖ < ε. Recall the definition of ‖F‖ for F ∈Mn

(
C0(Â)

)
:

‖F‖ = sup
x∈Â

{
‖F (x)‖

}
.

Here the norm on the matrix ‖F (x)‖ can be any norm, since all norms are equivalent

on a finite-dimensional vector space. So let us fix this norm to be the max norm, ie

‖F (x)‖max = sup
b,c∈D

‖[F (x)]b,c‖ = sup
b,c∈D

‖
(
Fb,c
)
(x)‖.

Thus

‖F ′ − F‖ = sup
x∈Â

{
‖
(
F ′ − F

)
(x)‖

}
= sup

x∈Â
sup
b,c∈D

{
‖
(
F ′ − F

)
b,c∈D(x)‖

}
= sup

b,c∈D
sup
x∈Â

{
‖
(
F ′ − F

)
b,c∈D(x)‖

}
= sup

b,c∈D

{
‖
(
F ′ − F

)
b,c∈D‖∞

}
=
∥∥‖(F ′ − F)

b,c
‖∞
∥∥

max
.

If, instead of the max norm on the n × n complex matrices we had chosen some

other norm, such that the operator norm, then by the equivalence of the norms the

above would simply become an inequality with some constant factor. Thus the ε–δ

statement above becomes clear.

Now we consider the next statement: for each b ∈ D, pick fb ∈ L1(A) such

that ‖f̂b − Fb,e‖ < δ. We can do this because, as indicated earlier in the paper,

{f̂ : f ∈ L1(A)} is dense in
(
C0(Â), ‖ · ‖∞

)
. Also, since

(
F(f)

)
b,e

= f̂b, this means

‖
(
F(f)− F

)
b,e
‖∞ = ‖

(
F(f)

)
b,e
− Fb,e‖∞ < δ for all b ∈ D. (8)
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The next sentence says: Define f ∈ L1(G) by f(b, a) = fb(a), for all b ∈ D,

a ∈ A. In the terminology we defined in these notes, this is simply to say take

f = θ−1
(
(fb)b∈D

)
.

Now we verify the formula in the Remark on p. 516: for each F ∈ Mn

(
C0(Â)

)D
we have

Fb,c(χ) = (c · χ)
(
α(b, c−1)−1α(c, c−1)

)
Fbc−1,e(c · χ), for χ ∈ Â and b, c ∈ D. (9)

This equations comes from the fact that, by definition of F being in the fixed point

algebra, β(d)F = F for all d ∈ D. Indeed, if we recall equation (6):

[β(d)(F )]b,c(χ) = (d−1 · χ)
(
α(b, d)−1α(c, d)

)
Fbd,cd(d

−1 · χ)

and consider β(c−1)F (χ) = F (χ) component-wise we get equation (9). Remark:

formula (9) proves the statement that precedes it in the paper, and is also useful for

proving the density argument, to which we now return.

From equation (9) we see that

‖
(
F(f)− F

)
b,c
‖∞ = sup

χ∈Â
‖
(
F(f)− F

)
b,c

(χ)‖

= sup
χ∈Â

∥∥(c · χ)
(
α(b, c−1)−1α(c, c−1)

)(
F(f)− F

)
bc−1,e

(c · χ)
∥∥

= sup
χ∈Â

∥∥(F(f)− F
)
bc−1,e

(c · χ)
∥∥

=
∥∥(F(f)− F

)
bc−1,e

∥∥
∞

Since we can make this less than δ for all b, c ∈ D, we have ‖Ff − F‖ < ε.

Page 516: The Example

Before addressing the example in Keith’s paper, we give some background on

the group pg which is used for that example. We let GLn(R) denote the group of

invertible linear transformations of Rn with identity element id. For x ∈ Rn and

L ∈ GLn(R), define [x, L] on Rn by [x, L]z = L(z + x). We define

Aff(Rn) = {[x, L] : x ∈ Rn, L ∈ GLnR};
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this is a group with multiplication,

[x, L][y,M ] = [M−1x+ y, LM ]

inverse,

[x, L]−1 = [−Lx, L−1]

and identity [0, id], the identity transformation on Rn. The group of translations in

Aff(Rn), explicitly

{[x, id] : x ∈ Rn},

is a normal subgroup which we denote by Trans(Rn). Let q : Aff(Rn)→ GLn(R) be

given by q([x, L]) = L; q is a homomorphism onto GLn(R) with kernel Trans(Rn),

so that

Aff(Rn)
/

Trans(Rn) ∼= GLn(R).

Let On denote the group of orthogonal transformations of Rn and let

Isom(Rn) = {[x, L] ∈ Aff(Rn) : L ∈ On};

this is a closed subgroup of Affn(Rn). A subgroup Γ of Isom(Rn) is called a crystal

group if it is discrete and co-compact, ie Rn
/

Γ is compact, where, by definition,

Rn /Γ = {[z] : z ∈ Rn},

where [z] = Γz =
{

[x, L]z : [x, L] ∈ Γ
}

, the Γ-orbit of z in Affn(R). We make the

collection of orbits into a group by defining the group product on representatives of

equivalence classes.

Exercise 0.6. Γ is co-compact if and only if there exists a compact K ⊂ Rn such

that
⋃

[x,L]∈Γ[x, L]K = Rn (and this union is ae-disjoint—check!)

We give Rn
/

Γ the quotient topology, ie, the strongest topology that makes the

canonical quotient map z → Γz ∈ Rn
/

Γ continuous.

24



Let Γ be a crystal group, and let

D = q(Γ) = {L ∈ On : [x, L] ∈ Γ for some x ∈ Rn}.

Then D is a finite subgroup of On called the point group. We define

A = Γ ∩ Trans(Rn) = {[x, L] ∈ Γ : L = id};

this is an abelian normal subgroup of Γ, and is the kernel of q|Γ; thus Γ
/
A ∼= D, by

the first isomorphism theorem.

Exercise 0.7. There exists {u1, u2, . . . , un} ⊂ Rn such that span{u1, u2, . . . , un} =

Rn, and

A =
{[ n∑

j=1

kjuj, id
]

: (k1, . . . , kn) ∈ Zn
}
,

so that A ∼= Zn.

The example described in the paper is the two-dimenional crystal group Γ = pg,

illustrated below. If we choose u1 as a basis vector parallel to the horizontal axis and

u2 as a basis vector parallel to the vertical axis, then this group tiles the plane by

integer shifts and a half-integer glide reflection. A glide reflection is what it sounds

like: a reflection together with a translation (or glide). Explicitly, the glide reflection

is [(k+ 1
2
)u1, σ], where σ is the element of On that fixes u1 and sends u2 to −u2. We

know from algebra that Γ is partitioned by the cosets of A. The cosets are fibers

over elements of D, with respect to the homomorphism q|Γ. For each L ∈ D, we let

γ(L) be a coset representative for the coset that is the fiber over L. Thus

Γ =
⋃
L∈D

γ(L)A.

Then γ : D → Γ is such that q ◦ γ = idD. γ is a cross-section for the equivalence

relation ∼ on Γ given by [x,M ] ∼ [y,N ] ⇐⇒ q([x,M ]) = q([y,N ]) ⇐⇒ L = M ;

γ(D) is a transversal for ∼ —a subset of Γ that meets each coset of A exactly once.

This is the same meaning γ has had throughout.

25



u2

u1

Figure 1: The wallpaper group pg. The vectors u1 and u2 form a basis for R2.

For the group Γ = pg, we can take γ(idOn) = [0, idOn ] and γ(σ) = [1
2
u1, σ]. We

have

pg = γ(id)A ∪ γ(σ)A,

or

pg = {[ku1 + ju2, id] : k, j ∈ Z} ∪ {[(k + 1
2
)u1 + ju2, σ] : k, j ∈ Z}.

We have also seen in the paper by Keith Taylor how the group D acts on A: for

d ∈ D and a ∈ A, we have d · a = γ(d)aγ(d)−1; and how this gives rise to an action

of D on Â: d · χ = χ(d · a) for each χ ∈ Â. We now introduce the notation of the

example in the paper: we note that the group Γ = pg we described above can be

expressed as

G = {(1,m, n), (−1,m, n) : m,n ∈ Z},

with group product given by the following table (note multiplication is row · column—

this group is noncommutative):

row header · column header (1,m, n) (−1,m, n)

(1, k, l) (1, k +m, l + n) (−1, k +m,n− l)
(−1, k, l) (−1, k +m, l + n) (1, k +m,n− l)
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This description can be realized under the mappings

[ku1 + ju2, id] 7→ (1, j, k),

[(k + 1
2
)u1 + ju2, σ] 7→ (−1, j, k).

We have A = {(1,m, n) : m,n ∈ Z} ∼= Z2, and D = {1,−1} ∼= Z
/

2Z. Identifying

A with Z2 via (1,m, n) 7→ (m,n), the dual group Â ∼= {χω : (m,n) 7→ e2πıω·(m,n) :

m,n ∈ Z} consists of homomorphisms from Z2 into S1 that are Z2-periodic in the ω

domain, and hence

Â ∼=
{
χω : χω(m,n) = e2πıω·(m,n) and ω ∈ [−1

2
, 1

2
)2
} ∼= T2,

where T2 is the torus:
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Figure 2: The Torus

The torus can be parametrized over the domain [−1
2
, 1

2
)2 ⊂ R2 as above or,

alternatively, it can be expressed in terms of complex parameters:

T2 = {(z, w) : z, w ∈ C, |z| = |w| = 1} = S1 × S1.

The latter parametrization is can be deduced from the former by writing ω = (ω1, ω2)

so that

e2πıω·(m,n) = e2πıω1me2πıω2n = zmwn,

where z = e2πıω1 and w = e2πıω1 . Thus for (z, w) ∈ T2 we have χz,w ∈ Â defined by

χz,w(1,m, n) = zmwn for all (1,m, n) ∈ A.

A remark on the representation of C∗(G) as the algebra of matrix-valued functions

of the form given in Keith’s paper: it would be better notation to express the matrix

entries in terms of Fk1 where k = ±1, since it was remarked earlier that the algebra

can be realized as the matrices {Fcd} whose e-column {Fce : c ∈ D} determines the

whole matrix by D-invariance, according to the formula (9). So it would be more

consistent notation to say that C∗(G) is isomorphic to the algebra of matrix-valued

functions F on T2 of the form:

F (z, w) =

(
F11(z, w) zF−11(z, w)

F−11(z, w) F11(z, w)

)
. (10)

Then the map which restricts F in M2

(
C(T2)

)
= C

(
T2,M2(C)

)
to Ω pro-
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vides an isomorphism of C∗(G) with

{F ∈ C
(
Ω,M2(C)

)
: F (z,±1) ∈ Rz, for each z ∈ T},

where

Ω = {(z, w) ∈ T2 : Im(w) ≥ 0},

and

Rz =

{(
a zb

b a

)
: a, b ∈ C

}
,

a *-subalgebra of M2(C).

Check: We must verify that the map is one-to-one, onto, and an algebra ho-

momorphism. We know that C∗(G) is isomorphic to the algebra of matrix-valued

functions F on T2 of the form (10) above. Let’s first show that F 7→ F |Ω is onto.

Let

G = {F ∈ C
(
Ω,M2(C)

)
: F (z,±1) ∈ Rz, for each z ∈ T},

and let

F =

(
F11 F12

F21 F22

)
∈ G .

Let Ω∗ = {(z, w) : (z, w) ∈ Ω}, so that T2 = Ω ∪ Ω∗, and this union overlaps only

when (z, w) = (z, w), which is to say, on {(z,±1) : z ∈ S1}. Consider the element of

H ∈M2

(
C(T2)

)
defined by

H(z, w) =



(
F22(z, w) zF21(z, w)

zF12(z, w) F11(z, w)

)
if (z, w) ∈ Ω∗(

F11(z, w) F12(z, w)

F21(z, w) F22(z, w)

)
if (z, w) ∈ Ω .

This is our candidate for an element in the preimage. Note that H is well-defined

because F ∈ G , which implies that F22(z,±1) = F11(z,±1), and F12(z,±1) =

zF21(z,±1).
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For (z, w) ∈ Ω∗ we have (z, w) ∈ Ω, and hence

H22(z, w) = F11(z, w) = H11(z, w) for (z, w) ∈ Ω∗;

and moreover, for (z, w) ∈ Ω we have (z, w) ∈ Ω∗, so that

H22(z, w) = F22(z, w) = F22(z, w) = H11(z, w) for (z, w) ∈ Ω.

Thus H22(z, w) = H11(z, w) for all (z, w) ∈ T2. Similarly,

H12(z, w) = zF21(z, w) = zH21(z, w) for (z, w) ∈ Ω∗;

and

H12(z, w) = F12(z, w) = z[zF12(z, w)] = zH21(z, w) for (z, w) ∈ Ω,

whence H12(z, w) = zH21(z, w) for all (z, w) ∈ T2. Therefore H corresponds to an

element of C∗(G). Finally, that H|Ω = F is immediate from the way we defined H.

Thus we have shown that F 7→ F |Ω is onto.

Next we note that F 7→ F |Ω is trivially seen to be an algebra homomorphism.

From this it follows that to verify that it is one-to-one, we need only check that it

has trivial kernel. Suppose that F |Ω = 0. the zero matrix in M2

(
C(T2)

)
, where

F =

(
F11 F12

F21 F22

)
∈M2

(
C(T2)

)
.

Since F corresponds to an element in C∗(G), we know from (10) that

F22(z, w) = F11(z, w) for all (z, w) ∈ T2, (11)

and that

F12(z, w) = zF21(z, w) for all (z, w) ∈ T2. (12)

Thus

F (z, w) =

(
F11(z, w) zF21(z, w)

F21(z, w) F11(z, w)

)
for all (z, w) ∈ T2,
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and this is equal to the zero matrix when (z, w) ∈ Ω. This implies that

F11(z, w) = F11(z, w) = 0 when (z, w) ∈ Ω,

which is to say that F11 = 0 on Ω ∪ Ω∗ = T2. It follows from (11) that F22 = 0 on

all of T2. Moreover,

zF21(z, w) = F21(z, w) = 0 when (z, w) ∈ Ω,

whence F21 = 0 on all of T2; it follows from (12) that F12 = 0 on T2 as well. We’ve

shown that F = 0, which concludes the argument.

From The Addendum

Page 517, line 7 As noted before, we will use the letter θ instead of U , since U

has been used elsewhere. Thus for h ∈ L2(G) we have

θh =
(
(θh)d

)
d∈D,

where

(θh)d(t) = hd(t) = h(d, t).

Page 517, second paragraph The maps ρ and λG were defined on pages 515

and 512 of the paper, respectively.

Page 517, third paragraph Notice the similarity between the map λ̃ defined

here and the map M defined earlier in the paper.

Page 517, line 20 It is easy to see that for f ∈ L1(G), UλG(f)U∗ ∈Mn

(
C∗λ(N)

)
.

Check: As mentioned above, we use θ instead of U . We must show that

θλG(f)θ∗ ∈ range(λ̃) for all f ∈ L1(G).

So we must find a matrix F = (Fb,c)b,c∈D such that

θλG(f)θ∗ = λ̃
(
(F )b,c

)
.

31



This can be expressed componentwise as(
θλG(f)θ−1(hb)b∈D

)
d

=
(
λ̃(F )(hb)b∈D

)
d

=
∑
b∈D

λN(Fd,b)hb =
∑
b∈D

Fd,b ∗ hb,

for each (hc)c∈D ∈
⊕

c∈D L
2(N), and where the convolution above is over the group

N .

First we note from (4) that

θ−1
(
(hb)b∈D

)
d

=
∑
b∈D

h̃b ∈ L2(G),

where

h̃b(t) = h(t)1γ(b)N(t)

for all t ∈ G. Now we have

λG(f)θ−1(hb)b∈D = λG(f)
(∑
b∈D

h̃b
)

= f ∗
(∑
b∈D

h̃b
)

=
∑
b∈D

f ∗ h̃b,

where the convolution here is over G. Writing f =
∑

c∈D f̃c, we have

λG(f)θ−1(hb)b∈D =
∑
b∈D

(∑
c∈D

f̃c
)
∗ h̃b.

We wish to find the d-th component of this, ie(
θλG(f)θ−1(hb)b∈D

)
d

=
[∑
b∈D

(∑
c∈D

f̃c
)
∗ h̃b

]
d
.

For any t ∈ N , we have[∑
b∈D

(∑
c∈D

f̃c
)
∗ h̃b

]
d
(t) =

∑
b∈D

[(∑
c∈D

f̃c
)
∗ h̃b

](
γ(d)t

)
.

Thus we would be done if we could write[(∑
c∈D

f̃c
)
∗ h̃b

](
γ(d)t

)
= (Fd,b ∗ hb)(t)
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for any t ∈ N , for an appropriate Fd,b ∈ L1(N). The left-hand side is equal to∫
G

(∑
c∈D

f̃c
)
(y)h̃b

(
y−1γ(d)t

)
dy

=

∫
G

(∑
c∈D

f(y)1γ(c)N(y)
)
h
(
y−1γ(d)t

)
1γ(b)N

(
y−1γ(d)t

)
dy

=

∫
G

[∑
c∈D

f
(
γ(d)y

)
1γ(c)N

(
γ(d)y

)]
h(y−1t)1γ(b)N(y−1t) dy

=

∫
G

[∑
c∈D

f
(
γ(d)y

)
1γ(c)N

(
γ(d)y

)]
h(y−1t)1Nγ(b)−1(y) dy

=

∫
G

[∑
c∈D

f
(
γ(d)yγ(b)−1

)
1γ(c)N

(
γ(d)yγ(b)−1

)]
h
(
γ(b)y−1t

)
1N(y) dy

=

∫
N

[∑
c∈D

f
(
γ(d)yγ(b)−1

)
1γ(c)N

(
γ(d)yγ(b)−1

)]
hb
(
y−1t

)
dy

=
(
Fd,b ∗ hb

)
(t),

where

Fd,b(y) =
∑
c∈D

f
(
γ(d)yγ(b)−1

)
1γ(c)N

(
γ(d)yγ(b)−1

)
∈ L1(N);

in the above string of equalities we have used the left and right translation invariance

of the Haar integral on the (unimodular) group G. The formula for Fd,b may be

simplified as follows:

1γ(c)N

(
γ(d)yγ(b)−1

)
= 1γ(d)−1γ(c)Nγ(b)(y),

and we are integrating over N , so the above indicator function is nonzero only when

y ∈ N ∩ γ(d)−1γ(c)Nγ(b).

This holds precisely when

γ(d)−1γ(c)γ(b) ∈ N.

If c = db−1 then one can check that

γ(d)−1γ(c)γ(b) = γ(b)−1α(b, b−1)α(d, b−1)−1γ(b) ∈ N.
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Since the cosets partition G, this is the only value of c for which 1γ(c)N

(
γ(d)yγ(b)−1

)
is nonzero. Thus we have

Fd,b(y) = f
(
γ(d)yγ(b)−1

)
1γ(db−1)N

(
γ(d)yγ(b)−1

)
.
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