
Wavelets in Rd

Tom Potter

1 Wavelets and Multi-Resolution Analyses

These notes are based closely on Chapter 5 of Wojtaszczyk’s book [8].

Definition 1.1. A fixed integer matrix A will be called a dilation matrix if all of

its eigenvalues have absolute value or modulus greater than 1. For convenience we

define the dilation operator on L2(Rd) by DAf(x) = | det(A)|1/2f(Ax); this is a

unitary operator on L2(Rd).

Definition 1.2. Given a dilation matrix A, we say that a collection of functions

{Ψ1, . . . ,Ψs} with Ψr ∈ L2(Rd) for r = 1, . . . , s is a multiwavelet or, in some texts,

a wavelet set associated to a A, if{
| det(A)|j/2Ψr(Ajx− γ)

}
(1)

for r = 1, . . . , s, j ∈ Z, and γ ∈ Zd is an orthonormal basis for L2(Rd); in this case

we call (1) a wavelet system associated to A. In terms of previously defined notation,

we say that {Ψ1, . . . ,Ψs} is a multiwavelet if the wavelet system{
DAj(TγΨ

r) : r = 1, . . . , s, j ∈ Z, γ ∈ Zd
}

is an orthonormal basis for L2(Rd).

Definition 1.3. We say that a collection {Vj}j∈Z of closed subspaces of L2(Rd) is a

generalized multiresolution analysis (GRMA) if it satisfies

(i) · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . .

(ii)
⋃
j∈Z Vj is dense in L2(Rd)
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(iii)
⋂
j∈Z Vj = {0}

(iv) Vj = Dj
A(V0) = DAj(V0)

(v) f ∈ V0 implies Tγf ∈ V0 for all γ ∈ Zd.

If, in addition, we have

(vi) there exists a function Φ ∈ V0 such that {Φγ}γ∈Zd is an orthonormal basis

for V0,

then the collection {Vj}j∈Z is called a multiresolution analysis (MRA) associated to

A, and Φ is the associated scaling function.

In this section we will show how to construct a multiwavelet from a given MRA.

I include this because I think it’s impressive as well as instructive. There are more

abstract proofs of the existence of a multiwavelet given a GMRA and vice-versa (see

[1] and [2]), but I think it’s worthwhile to see more explicitly how to construct one.

We will need some more terminology and some preliminary results first.

Proposition 1.4. Let A be a dilation matrix. The number of cosets of A(Zd) in Zd

is | det(A)|.

This Proposition is crucial. We follow closely the proof given in Mark Pinsky’s

book [6], pp. 355–356. We first need a lemma (also in Pinsky):

Lemma 1.5. Let Q ⊂ Rd be a measurable subset such that the Zd-translates of Q

cover Rd, i.e., ⋃
γ∈Zd

Q+ γ = Rd.

Then m(Q) ≥ 1, with equality if and only if

m
(
Q ∩ (Q+ γ)

)
= 0 whenever γ 6= 0.
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Proof. Letting χQ(x) denote the indicator function on Q, and define

f(x) :=
∑
γ∈Zd

χQ(x+ γ).

We have that

m(Q) =

∫
Rd
χQ(x) dm(x)

=

∫
Rd

∑
γ∈Zd

χ[0,1]d+γ(x)χQ(x) dm(x)

=

∫
Rd
χ[0,1]d(x)

∑
γ∈Zd

χQ(x+ γ) dm(x)

=

∫
[0,1]d

f(x) dm(x)

≥ 1, (2)

since f(x) ≥ 1 everywhere. If m(Q) = 1, then the above equations implies that∫
[0,1]d

(
f(x)− 1

)
dm(x) = 0,

and hence f(x) = 1 a.e. on [0, 1]d; since f is Zd-periodic, this means that f = 1 a.e.

in Rd. If m
(
Q ∩ (Q+ γ)

)
> 0, then

f(x) ≥ χQ(x) + χQ(x− γ)

= χQ(x) + χQ+γ(x)

= 2 for x ∈ Q ∩ (Q+ γ),

a contradiction.

Suppose conversely that m
(
Q ∩ (Q + γ)

)
= 0 for each γ 6= 0. This implies that

the function f defined above is less than or equal to 1 a.e.. For suppose that f ≥ 2

on some set E of positive measure. Then since
⋃
γ∈Zd Q+ γ = Rd, we have

E = E ∩
⋃
γ∈Zd

Q+ γ =
⋃
γ∈Zd

E ∩ (Q+ γ)
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Since f ≥ 2 on E, there exist γ1, γ2 ∈ Zd with γ1 6= γ2 such that

m
(
E ∩ (γ1 +Q) ∩ (γ2 +Q)︸ ︷︷ ︸

:=F

)
> 0.

Then

F − γ1 = (E − γ1) ∩Q ∩ [(γ2 − γ1) +Q],

so that

F − γ1 ⊂ Q ∩ [(γ2 − γ1) +Q].

Since m(F − γ1) = m(F ) > 0, this contradicts our hypothesis. Thus f ≤ 1 a.e.. Since

the Zd-translates of Q cover Rd, f ≥ 1 everywhere; hence f = 1 a.e.. Equation (2)

then gives us m(Q) = 1.

We now prove Proposition 1.4.

Proof. We let {Γ1, . . . ,Γn} be representatives of the cosets of A(Zd) in Zd. We have

Zd =
n⋃
i=1

Γi + A(Zd) =
n⋃
i=1

⋃
γ∈Zd

Γi + A(γ).

Thus

Rd = [0, 1]d + Zd =
n⋃
i=1

⋃
γ∈Zd

[0, 1]d + Γi + A(γ). (3)

We define

W :=
n⋃
i=1

[0, 1]d + Γi.

Then m(W ) = n, and from (3) we have Rd = W + AZd. Therefore, since

m(A−1W ) = | detA−1|m(W ) =
1

| detA|
m(W ),

it suffices to show that m(A−1W ) = 1. Since the determinant of A is nonzero, A is

nonsingular, so

A−1W + Zd = A−1Rd = Rd;
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i.e., the Zd-translates of A−1W cover Rd. Thus, if we can show that A−1W∩A−1W+γ

is null whenever γ 6= 0, we are done. Since m([0, 1]d) = 1 and the Zd-translates of

[0, 1]d cover Rd, the lemma tells us that

m
(
[0, 1]d ∩ ([0, 1]d + γ)

)
= 0 for all γ 6= 0.

Now

W ∩W + Aγ =
[ n⋃
i=1

[0, 1]d + Γi
]
∩
[ n⋃
j=1

[0, 1]d + Γj + Aγ
]

(4)

If i = j and γ 6= 0, then clearly Γi 6= Γj +Aγ. On the other hand, if i 6= j and γ 6= 0,

then Γi,Γj are—by definition—representatives of different cosets of AZd, whence

Γi 6= Γj + Aγ. In either case, we have

m
([

[0, 1]d + Γi
]
∩
[
[0, 1]d + Γj + Aγ

])
= 0.

It follows from (4) that

m
(
W ∩ (W + Aγ)

)
= 0 whenever γ 6= 0.

Now since A is nonsingular, it is a bijection on Rd and hence it preserves intersections,

so that

m
(
A−1W ∩ (A−1W + γ)

)
= m

(
A−1(W ∩ (W + Aγ))

)
= 0,

as desired.

Definition 1.6. A sequence of vectors {xj}j∈J in a Hilbert space H is called a Riesz

sequence if there exist constants 0 < c ≤ C such that

c
(∑
j∈J

|aj|2
)1/2

≤
∥∥∥∑
j∈J

ajxj

∥∥∥ ≤ C
(∑
j∈J

|aj|2
)1/2

(5)

for all sequences of scalars {aj}j∈J . If, in addition, we have
∨
j∈J xj = H , where

∨
denotes the closed linear span, then we call {xj} a Riesz basis.
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We note that the above definition contains a minor abuse of terminology, since

the “sequences” are functions whose domains may not be N, exactly. We now record

some standard results pertaining to L2.

Lemma 1.7. The exponential functions {eıγ·x}γ∈Zd are orthonormal in L2([0, 2π]d).

Proof. We compute

〈eıγ1·x, eıγ2·x〉 =
1

(2π)d

∫
[0,2π]d

eıγ1·xe−ıγ2·x dx

=
1

(2π)d

∫
[0,2π]d

eı(γ1−γ2)·x dx.

If γ1 = γ2 then this is clearly equal to 1. If γ1 6= γ2, then we write the scalar product

(γ1 − γ2) · x =
d∑
i=1

(γ1 − γ2)ixi,

and by Fubini’s theorem we may write the integral above as an iterated integral:∫
[0,2π]d

eı(γ1−γ2)·x dm(x)

=

∫ 2π

0

· · ·
∫ 2π

0

e
∑d
i=1 ı(γ1−γ2)ixi dm(x1), . . . , dm(xd)

=
d∏
i=1

∫ 2π

0

eı(γ1−γ2)ixi dm(xi).

Since γ1 6= γ2, there must be some component i for which (γ1 − γ2)i 6= 0, and hence

the integral will be 0.

In fact, more is true: {eıγ·x} is an orthonormal basis for L2[0, 2π]d. This is a

very important fact, and is a corollary of the Stone-Weierstrass theorem. Recall this

theorem:

Theorem 1.8 (Stone-Weierstrass/Theorem 8.1 in Conway). If X is compact and A

is a closed subalgebra of C(X) such that
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(i) the constant function 1 is in A ;

(ii) A separates points, i.e., if x, y ∈ X and x 6= y, then for some f ∈ A ,

f(x) 6= f(y);

(iii) A is closed under complex conjugation,

then A = C(X). This could be rephrased by saying that if A is a subalgebra of

C(X) satisfying the above properties, then A is dense in C(X) in the sense that for

each f ∈ C(X), there exists a sequence {fn} in A converging uniformly on X to f .

Theorem 1.9. {eıγ·x} is an orthonormal basis for L2[0, 2π]d.

Proof. For each γ ∈ Zd, define eγ on C
(
([0, 2π]/{0, 2π})d

)
by eγ(t) = eıγ·x. Then the

algebra A of finite linear combinations of the eγ (the algebra of trigonometric poly-

nomials) satisfies the properties in the hypotheses of the Stone-Weierstrass theorem.

It follows that each f ∈ C
(
([0, 2π]/{0, 2π})d

)
is a uniform limit of elements of A .

Now we may regard any f ∈ C
(
([0, 2π]/{0, 2π})d

)
as an element of L2[0, 2π]d , and

since L2[0, 2π]d is a finite measure-space, we have by Theorem 7.1 in [3] that any

such f is an L2 limit of points in A . Finally, because C[0, 2π]d is dense in L2[0, 2π]d,

the conclusion follows.

Recall that for a function f , its associated Fourier series is

f ∼
∑
γ∈Zd

f̂(γ)eıγ·x,

where the Fourier coefficient f̂(γ) is given by

f̂(γ) = 〈f, eıγ·x〉 =
1

(2π)d

∫
[0,2π]d

f(x)e−ıγ·x dm(x).

When f ∈ L2[0, 2π]d, the Fourier series associated with f converges to f in L2,

because {eıγ·x} is an orthonormal basis for L2[0, 2π]d; cf. Theorem 4.13 in [4].

7



More generally, we can consider the Hilbert space L2([0, `]d). In this case inner

product is

〈f, g〉 =
1

`d

∫
[0,`]d

f(x)g(x) dm(x),

and an argument identical to the one given for the L2([0, 2π]d) case shows that an

orthonormal basis is give by the functions

{e
(

2π
`

)
ıγ·x : γ ∈ Zd}.

Thus, we can form the Fourier series for an element f ∈ L2[0, `]d:

f ∼
∑
γ∈Zd

f̂(γ)e

(
2π
`

)
ıγ·x,

where the Fourier coefficients f̂(γ) are given by

f̂(γ) = 〈f, e
(

2π
`

)
ıγ·x〉 =

1

`d

∫
[0,`]d

f(x)e−
(

2π
`

)
ıγ·x dm(x).

Lemma 1.10. Let Φ ∈ L2(Rd) and let {aγ}γ∈Zd be a sequence of scalars. We have∥∥∥∑
γ∈Zd

aγΦ(x− γ)
∥∥∥2

L2(Rd)
=

∫
[0,2π]d

∣∣∣ ∑
γ∈Zd

aγe
−ıγ·ξ

∣∣∣2∑
l∈Zd
|Φ̂(ξ + 2πl)|2 dm(ξ). (6)

Proof. Using Plancherel’s theorem and the fact that translation corresponds to mul-

tiplication by exponentials under the Fourier transform, we have∥∥∥∑
γ∈Zd

aγΦ(x− γ)
∥∥∥2

L2(Rd)
=
∥∥∥∑
γ∈Zd

aγ[Φ(ξ − γ)]∧
∥∥∥2

L2(Rd)

=
∥∥∥∑
γ∈Zd

aγe
−ıγ·ξΦ̂(ξ)

∥∥∥2

L2(Rd)

=

∫
Rd

∣∣∣ ∑
γ∈Zd

aγe
−ıγ·ξ

∣∣∣2∣∣Φ̂(ξ)
∣∣2 dm(ξ). (7)
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Splitting up Rd into cubes and using the 2πZd-periodicity of e−ım·x, we get that (7)

equals ∫
[0,2π]d

∑
l∈Zd

∣∣∣ ∑
γ∈Zd

aγe
−ıγ·(ξ+2πl)

∣∣∣2∣∣Φ̂(ξ + 2πl)
∣∣2 dm(ξ)

=

∫
[0,2π]d

∣∣∣ ∑
γ∈Zd

aγe
−ıγ·ξ

∣∣∣2∑
l∈Zd

∣∣Φ̂(ξ + 2πl)
∣∣2 dm(ξ).

We can now prove the following standard result about Riesz sequences.

Proposition 1.11. Let Φ be a function in L2(Rd). Then {TγΦ}γ∈Zd is a Riesz

sequence with constants c and C if and only if

c2(2π)−d ≤
∑
l∈Zd
|Φ̂(ξ + 2πl)|2 ≤ C2(2π)−d a.e. ξ ∈ Rd. (8)

Proof. Assume that (8) holds; then it follows from (6) that

c2(2π)−d
∫

[0,2π]d

∣∣∣ ∑
γ∈Zd

aγe
−ıγ·ξ

∣∣∣2 dm(ξ)

≤
∥∥∥∑
γ∈Zd

aγΦ(x− γ)
∥∥∥2

L2(Rd)
≤ C2(2π)−d

∫
[0,2π]d

∣∣∣ ∑
γ∈Zd

aγe
−ıγ·ξ

∣∣∣2 dm(ξ).

Now since {eıγ·ξ}γ∈Zd is an orthonormal family in L2([0, 2π]d), we have∫
[0,2π]d

∣∣∣ ∑
γ∈Zd

aγe
−ıγ·ξ

∣∣∣2 dm(ξ) = (2π)d
∥∥∥∑
γ∈Zd

aγe
−ıγ·ξ

∥∥∥2

L2[0,2π]
= (2π)d

∑
γ∈Zd
|aγ|2

by the Pythagorean theorem. Thus we have

c2
∑
γ∈Zd
|aγ|2 ≤

∥∥∥∑
γ∈Zd

aγΦ(x− γ)
∥∥∥2

L2(Rd)
≤ C2

∑
γ∈Zd
|aγ|2,

which shows that {TγΦ}γ∈Zd is a Riesz sequence with constants c and C. Now we

wish to prove the converse. We let

Cα =
{
ξ ∈ [0, 2π]d :

∑
l∈Zd
|Φ̂(ξ + 2πl)|2 > α

}
.
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The plan is to show that it is not possible for Cα to have positive measure for any

α > C2

(2π)d
. This will establish the right hand side of (8). Suppose that for some α,

Cα has positive measure. Then since the indicator function χCα(ξ) is in L2[0, 2π]d,

it is equal to its Fourier series a.e. (by Carleson’s theorem) and in L2:

χCα(ξ) =
∑
γ∈Zd

χ̂Cα(γ)e−ıγ·ξ a.e. and in L2[0, 2π]d (9)

where the coefficients

χ̂Cα(γ) =
1

(2π)d

∫
[0,2π]d

χCα(x)e−ıγ·x dm(x)

are called the Fourier coefficients. Since the convergence of the Fourier series in (9)

is in L2 and exponentials are orthonormal, it follows from the Pythagorean theorem

that the sequence of Fourier coefficients {χ̂Cα(γ)}γ∈Zd is in l2(Zd). Now, applying

Lemma 1.10 to the sequence {χ̂Cα(γ)}γ∈Zd yields∥∥∥∑
γ∈Zd

χ̂Cα(γ)Φ(x− γ)
∥∥∥2

L2(Rd)
=

∫
[0,2π]d

∣∣∣χCα(ξ)
∣∣∣2∑
l∈Zd
|Φ̂(ξ + 2πl)|2 dm(ξ)

=

∫
Cα

∑
l∈Zd
|Φ̂(ξ + 2πl)|2 dm(ξ)

≥ αm(Cα).

Now by (9) and the Pythagorean theorem, we have∑
l∈Zd
|χ̂Cα(γ)|2 = ‖χCα‖2

L2[0,2π]d =
m(Cα)

(2π)d
,

and hence ∥∥∥∑
γ∈Zd

χ̂Cα(γ)Φ(x− γ)
∥∥∥2

L2(Rd)
≥ α(2π)d

∑
l∈Zd
|χ̂Cα(γ)|2.

Now by assumption, {Φ(x − γ)} is a Riesz sequence with constants c and C, and

therefore

α(2π)d
∑
l∈Zd
|χ̂Cα(γ)|2 ≤ C2

∑
l∈Zd
|χ̂Cα(γ)|2.

Hence α ≤ C2

(2π)d
. The left hand side of (8) is established in the same way.
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Corollary 1.12. Let Φ be a function in L2(Rd). Then {TγΦ}γ∈Zd is an orthonormal

family in L2(Rd) if and only if∑
l∈Zd
|Φ̂(ξ + 2πl)|2 = (2π)−d a.e.. (10)

Proof. The preceding proposition implies that condition (10) is equivalent to having∥∥∥∑
γ∈Zd

aγΦ(x− γ)
∥∥∥2

L2(Rd)
=
∑
γ∈Zd
|aγ|2 (11)

for every sequence of scalars {aγ}γ∈Zd . Suppose that {Φ(x − γ)} is an orthonormal

family. Then (11) holds by Pythagoras’ theorem. Suppose conversely that (11)

holds; then {Φ(x−γ)} is seen to be orthonormal by choosing appropriate sequences.

Specifically, if we choose {aγ} to be the sequence

aγ =

{
1 if γ = γ0

0 otherwise,

then we see that ‖Φ(x− γ0)‖ = 1; γ0 ∈ Zd was arbitrary, so Φ(x− γ) has unit norm

for all γ ∈ Zd. If we choose

bγ =

{
1 if γ = γ1 or γ = γ2

0 otherwise,

then

2 =
∥∥∥∑
γ∈Zd

bγΦ(x− γ)
∥∥∥2

L2(Rd)
= 2 + 2Re

〈
bγ1Φ(x− γ1), bγ2Φ(x− γ2)

〉
,

whence

Re
〈
Φ(x− γ1),Φ(x− γ2)

〉
= 0.

If we choose

cγ =


ı if γ = γ1

1 if γ = γ2

0 otherwise,
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then we get

2 =
∥∥∥∑
γ∈Zd

cγΦ(x− γ)
∥∥∥2

L2(Rd)

= 2 +
〈
ıΦ(x− γ1),Φ(x− γ2)

〉
+
〈
Φ(x− γ2), ıΦ(x− γ1)

〉
,

whence

ı
(〈

Φ(x− γ1),Φ(x− γ2)
〉
−
〈
Φ(x− γ1),Φ(x− γ2)

〉)
= 0,

whence

Im
〈
Φ(x− γ1),Φ(x− γ2)

〉
= 0.

Lemma 1.13. (i) Given a multiresolution analysis {Vj}j∈N with scaling func-

tion Φ, we have f ∈ V1 if and only if there exists a 2πZd-periodic function

m ∈ L2[0, 2π]d such that

f̂(A∗ξ) = m(ξ)Φ̂(ξ), (12)

where the symbol ˆ denotes taking the Fourier transform, and A∗ denotes the

adjoint of the linear operator A (so A∗ is the conjugate transpose of A).

(ii) We have ∫
[0,2π]d

|m(ξ)|2 dm(ξ) =
(2π)d

q

∫
Rd
|f(x)|2 dm(x),

where q = | det(A)|.

Proof. Since f ∈ V1 if and only if DA−1f ∈ V0, we have

f(A−1x) =
∑
γ∈Zd

aγΦ(x− γ) (13)

for some sequence of scalars {aγ}. Recall that for any linear operator A,

(f ◦ A)̂(ξ) = (detA)−1f̂
(
(A−1)∗(ξ)

)
. (14)
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Applying this to take the Fourier transform of both sides of (13), and using the

continuity of the Fourier transform, we get

qf̂(A∗ξ) =
∑
γ∈Zd

aγe
ıξ·γΦ̂(ξ).

Thus, if we take

m(ξ) = q−1
∑
γ∈Zd

aγe
ıξ·γ, (15)

we get f̂(A∗ξ) = m(ξ)Φ̂(ξ), which gives (12). Having defined m in this way, it follows

from the Pythagorean theorem that

‖m‖2
L2[0,2π]d = 1

q2

∑
γ∈Zd
|aγ|2.

It follows from (13), the Pythagorean theorem, and the behaviour of the Lebesgue

integral under dilation that∑
γ∈Zd
|aγ|2 =

∫
Rd
|f(A−1x)|2 dm(x) = q

∫
Rd
|f(x)|2 dm(x).

Therefore, ∫
[0,2π]d

|m(ξ)|2 dm(ξ) =
(2π)d

q

∫
Rd
|f(x)|2 dm(x).

Thus, in particular, m(ξ) ∈ L2[0, 2π]d; note that by uniqueness of the Fourier coeffi-

cients (Riesz-Fischer), the coefficients in (15) are uniquely determined by the Fourier

series expansion for m.

Suppose conversely that there exists a 2πZd-periodic function m ∈ L2[0, 2π]d such

that (12) holds. Then since m is square-integrable, m has Fourier series expansion

m(ξ) =
∑
γ∈Zd

m̂(γ)eıγ·ξ in L2 and a.e..

Thus we can write

qf̂(A∗ξ) =
∑
γ∈Zd

qm̂(γ)eıγ·ξΦ̂(ξ).
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Now we can apply (14) to this to obtain

(f ◦ A−1)̂(ξ) =
∑
γ∈Zd

qm̂(γ)eıγ·ξΦ̂(ξ).

Now since, by the Plancherel Theorem, the Fourier transform is an isometric isomor-

phism on L2, we can take the inverse Fourier transform of both sides of the above

equation to obtain

f(A−1x) =
∑
γ∈Zd

qm̂(γ)Φ(x− γ).

Thus

DA−1(f) ∈ span{TγΦ} = V0,

whence f ∈ V1.

With this lemma in hand, suppose that {Vj}j∈N is a multiresolution analysis

associated with the dilation matrix A, with scaling function Φ, and let m be the

2πZd-periodic function satisfying∫
[0,2π]d

|m(ξ)|2 dm(ξ) =
(2π)d

q

∫
Rd
|f(x)|2 dm(x).

Then m ∈ L2[0, 2π]d, since f ∈ V1 ⊂ L2(Rd), so m has Fourier series expansion

m(ξ) =
∑
γ∈Zd

m̂(γ)eıγ·ξ in L2 and a.e..

Now let {Γr + A(Zd)}q−1
r=0 be the distinct cosets of A(Zd) in Zd. Define

mr :=
∑

γ∈Γr+A(Zd)

m̂(γ)eıγ·ξ,

so that

m =

q−1∑
r=0

mr.

14



Then

mr =
∑

γ∈A(Zd)

m̂(Γr + γ)eı(γ+Γr)·ξ

= eıΓr·ξ
∑

γ∈A(Zd)

m̂(Γr + γ)eıγ·ξ

= eıΓr·ξ
∑
γ∈Zd

m̂(Γr + Aγ)eı(Aγ)·ξ

= eıΓr·ξ
∑
γ∈Zd

m̂(Γr + Aγ)eıγ·(A
∗ξ).

Defining

µr(ξ) =
∑
γ∈Zd

m̂(Γr + Aγ)eıγ·ξ,

we have

mr(ξ) = eıΓr·ξµr(A∗ξ). (16)

Note that the µrf (ξ) are measurable: the functions m̂(Γr + Aγ)eıγ·ξ are measurable,

and hence finite sums of these are measurable. Now since Zd is countable, we can

reindex it by n↔ γn for each n ∈ N. Then

µr(ξ) =
∑
γ∈Zd

m̂(Γr + Aγ)eıγ·ξ = lim
N→∞

N∑
n=1

m̂(Γr + Aγn)eıγn·ξ

is a pointwise limit of measurable functions. Moreover, the µr(ξ) are in L2[0, 2π]d,

which follows from (16) and the fact that the functions mr are in L2[0, 2π]d, because

‖m‖2
L2 =

q−1∑
r=0

‖mr‖2
L2 .

Finally, since a sum of periodic functions is periodic, the functions µr(ξ) are 2πZd-
periodic, being the sum of the 2πZd-periodic functions m̂(Γr + Aγ)eıγ·ξ.

From the above remarks we see that:
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There is a one-to-one correspondence between functions f ∈ V1 and q-tuples

of 2πZd-periodic functions µr(ξ) whose restrictions to [0, 2π]d are in L2[0, 2π]d:

f ∈ V1 ↔
[
µ0(ξ) µ1(ξ) · · · µq−1(ξ)

]
, (17)

given by

f̂(A∗ξ) =

q−1∑
r=0

eıΓr·ξµr(A∗ξ)Φ̂(ξ). (18)

Now suppose f1, f2 are two elements of V1. Using Plancherel’s theorem we can

express the inner product 〈Tγ1f1, Tγ2f2〉 of the Zd-translates of f1, f2 in terms of the

inner product of the corresponding functions µ1, µ2, where

µi(ξ) :=
[
µ0
i (ξ) µ1

i (ξ) · · · µq−1
i (ξ)

]T
, i = 1, 2. (19)

We have, by Plancherel’s theorem,

〈Tγ1f1, Tγ2f2〉 = 〈T̂γ1f1, T̂γ2f2〉

=

∫
Rd
T̂γ1f1(ξ)T̂γ1f2(ξ) dm(ξ)

=

∫
Rd

e−ıγ1·ξf̂1(ξ)e−ıγ2·ξf̂2(ξ) dm(ξ)

=

∫
Rd
f̂1(ξ)f̂2(ξ)e−ı(γ1−γ2)·ξ dm(ξ).

Now by part (i) of Lemma 1.13 we have 2πZd-periodic functions m1 and m2 such

that

f̂1(A∗ξ) = m1(ξ)Φ̂(ξ) and f̂2(ξ) = m2(ξ)Φ̂(ξ).

Using the behaviour of the Lebesgue integral under translation, the above inner

product becomes

| det(A∗)|
∫
Rd
f̂1(A∗ξ)f̂2(A∗ξ)e−ı(γ1−γ2)·(A∗ξ) dm(ξ)

= q

∫
Rd

m1(ξ)m2(ξ)|Φ̂(ξ)|2e−ı(γ1−γ2)·(A∗ξ) dm(ξ),
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where q = | detA|. Now since m1, m2, and eıγξ are 2πZd-periodic, we can rewrite

this as

q

∫
[0,2π]d

∑
γ∈Zd

m1(ξ + 2πγ)m2(ξ + 2πγ)|Φ̂(ξ + 2πγ)|2 e−ıA(γ1−γ2)·(ξ+2πγ) dm(ξ)

= q

∫
[0,2π]d

m1(ξ)m2(ξ) e−ıA(γ1−γ2)·ξ
∑
γ∈Zd
|Φ̂(ξ + 2πγ)|2 dm(ξ).

Now since Φ is a scaling function, we have by Corollary 1.12 that
∑

γ∈Zd |Φ̂(ξ +

2πγ)|2 = (2π)−d, whence the above integral becomes

q

(2π)d

∫
[0,2π]d

m1(ξ)m2(ξ) e−ıA(γ1−γ2)·ξ dm(ξ)

=
q

(2π)d

∫
[0,2π]d

e−ıA(γ1−γ2)·ξ
( q−1∑
r=0

mr
1(ξ)

)( q−1∑
r=0

mr
2(ξ)

)
dm(ξ).

Now recall that

mr1
1 (ξ) = eıΓr1 ·ξµr11 (A∗ξ),

and

mr2
2 (ξ) = eıΓr2 ·ξµr22 (A∗ξ).

Since the exponential functions form an orthonormal family, our inner product be-

comes

q

(2π)d

∫
[0,2π]d

e−ı(γ1−γ2)·(A∗ξ)

q−1∑
r=0

µr1(A∗ξ)µr2(A∗ξ) dm(ξ)

=
1

(2π)d

∫
[0,2π]d

e−ı(γ1−γ2)·ξ
q−1∑
r=0

µr1(ξ)µr2(ξ) dm(ξ)

=
1

(2π)d

∫
[0,2π]d

e−ı(γ1−γ2)·ξ〈µ1(ξ),µ2(ξ)
〉
Cq dm(ξ),

where the µi are defined by (19). So altogether, we have〈
Tγ1f1, Tγ2f2

〉
L2(Rd)

=
〈〈

µ1(ξ),µ2(ξ)
〉
Cq , e

ı(γ1−γ2)·ξ
〉
L2[0,2π]d

.
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In other words,
〈
Tγ1f1, Tγ2f2

〉
is the Fourier coefficient of the complex scalar inner

product µ1(ξ) · µ2(ξ) at γ1 − γ2.

Theorem 1.14 (Proposition 5.9 in [8]). Let f0, . . . , fq−1 ∈ V1. With the notation

above, we have

(i) The family {f0(x− γ)}γ∈Zd is orthonormal if and only if

q−1∑
r=0

|µr0(ξ)|2 = 1 a.e.; (20)

(ii) For 0 ≤ s ≤ q − 1, the family {fj(x − γ)}γ∈Zd;j=0,...,s is orthonormal if and

only if the vectors

µj(ξ) :=
[
µ0
j(ξ) µ1

j(ξ) · · · µq−1
j (ξ)

]T
(21)

are mutually orthonormal in Cq for j = 0, . . . , s and for a.e. ξ ∈ [0, 2π]d.

(iii) The family {fj(x − γ)}γ∈Zd;j=0,...,q−1 is an orthonormal basis for V1 if and

only if the matrix

U(ξ) :=


µ0

0(ξ) µ1
0(ξ) · · · µq−1

0 (ξ)

µ0
1(ξ) µ1

1(ξ) · · · µq−1
1 (ξ)

...
...

. . .
...

µ0
q−1(ξ) µ1

q−1(ξ) · · · µq−1
q−1(ξ)

 (22)

is unitary for a.e. ξ ∈ [0, 2π]d. In particular, V1 has dimension q = | detA|.

(iv) If Φ is the scaling function associated with the MRA {Vj}j∈Z, then we can

find measurable, 2πZd-periodic functions {µrj}j=1,...,q−1;r=0,...,q−1, whose restric-

tions to [0, 2π]d are in L2[0, 2π]d, such that the matrix

U(ξ) :=


µ0

Φ(ξ) µ1
Φ(ξ) · · · µq−1

Φ (ξ)

µ0
1(ξ) µ1

1(ξ) · · · µq−1
1 (ξ)

...
...

. . .
...

µ0
q−1(ξ) µ1

q−1(ξ) · · · µq−1
q−1(ξ)

 (23)
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whose first row is obtained from Φ via (17), is unitary. We thereby obtain a col-

lection {Φ,Ψ1, . . . ,Ψq−1} of elements whose Zd-translates form an orthonormal

basis for V1, with Φ being one of the basis elements.

Proof. (i) Suppose first that

q−1∑
r=0

|µr0(ξ)|2 = 1 a.e..

Writing

µ0(ξ) :=
[
µ0

0(ξ) µ1
0(ξ) · · · µq−1

0 (ξ),
]T

this says that

‖µ0(ξ)‖2 = 1 a.e..

Now let γ1, γ2 ∈ Zd. If γ1 = γ2, then〈
Tγ1f0, Tγ2f0

〉
=
〈
‖µ0(ξ)‖2, eı(γ1−γ2)·ξ〉

=
〈
1, e0

〉
=

1

(2π)d

∫
[0,2π]d

1 dm(ξ)

= 1.

If γ1 6= γ2, then 〈
Tγ1f0, Tγ2f0

〉
=
〈
1, eı(γ1−γ2)·ξ〉

=
〈
1, eıγ1·ξeıγ2·ξ

〉
=
〈
eıγ2·ξ, eıγ1·ξ

〉
= 0.

Thus if ‖µ0(ξ)‖2 = 1 a.e., then {Tγf0}γ∈Zd is an orthonormal collection. On the

other hand, if the 2πZd-translates of f0 form an orthonormal collection, then

〈
‖µ0(ξ)‖2, eı(γ1−γ2)·ξ〉 =

〈
Tγ1f0, Tγ2f0

〉
=

{
1 if γ1 = γ2

0 otherwise.
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From this it follows that

〈
‖µ0(ξ)‖2, eıγ·ξ

〉
=

{
1 if γ = 0

0 otherwise.

In other words, all the Fourier coefficients of ‖µ0(ξ)‖2 are zero, except for the coeffi-

cient at 0, which is 1; in particular, the sequence of Fourier coefficients is in l2(Zd).
Now since the Fourier transform is an isometric isomorphism from L2[0, 2π]d onto

l2(Zd), there exists a unique function G ∈ L2[0, 2π]d such that

Ĝ(γ) = ‖̂µ0‖2(γ) for all γ ∈ Zd,

and by Carleson’s theorem G converges in L2 and a.e. to its Fourier series:

G(ξ) =
∑
γ∈Zd

Ĝ(γ)eıγ·ξ =
∑
γ∈Zd
‖̂µ0‖2(γ)eıγ·ξ = 1 a.e..

We also see from this that G ∈ L1[0, 2π]d. Now observe that ‖µ0(ξ)‖2 is in L1[0, 2π]d

as well, since

1 =
〈
Tγf0, Tγf0

〉
=

1

(2π)d

∫
[0,2π]d

‖µ0(ξ)‖2 dm(ξ).

Since the Fourier coefficients for G are equal to the Fourier coefficients for ‖µ0(ξ)‖2,

we have from Corollary 8.27 in Folland [5] thatG = ‖µ0(ξ)‖2 a.e.. Therefore ‖µ0(ξ)‖2

is in L2[0, 2π]d as well, so it converges a.e. to its Fourier series:

‖µ0(ξ)‖2 =
∑
γ∈Zd

〈
‖µ0(ξ)‖2, eıγ·ξ

〉
eıγ·ξ = 1 a.e..

(ii) The argument is similar to that of (i). Suppose first that the vectors

µj(ξ) :=
[
µ0
j(ξ) µ1

j(ξ) · · · µq−1
j (ξ)

]T
(24)

are mutually orthonormal in Cq for j = 0, . . . , s and for a.e. ξ ∈ [0, 2π]d. We wish to

show that for 0 ≤ s ≤ q − 1, the family {Tγfj}γ∈Zd;j=0,...,s is orthonormal. Now let
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γ1, γ2 ∈ Zd, and let i, j ∈ {0, . . . , s}. If γ1 = γ2 = γ and i = j, then〈
Tγ1fi, Tγ2fj

〉
L2(Rd)

=
〈
µi(ξ) · µj(ξ), e

ı(γ1−γ2)·ξ
〉
L2[0,2π]d

.

=
〈
‖µi(ξ)‖2, eı(γ−γ)·ξ

〉
L2[0,2π]d

.

=
〈
1, e0

〉
= 1.

If i = j but γ1 6= γ2, then〈
Tγ1fi, Tγ2fj

〉
L2(Rd)

=
〈
‖µi(ξ)‖2, eı(γ1−γ2)·ξ

〉
=
〈
1, eıγ1·ξeıγ2·ξ

〉
=
〈
eıγ2·ξ, eıγ1·ξ

〉
= 0.

If i 6= j, then 〈
Tγ1fi, Tγ2fj

〉
L2(Rd)

=
〈
µi(ξ) · µj(ξ), e

ı(γ1−γ2)·ξ
〉
L2[0,2π]d

.

=
〈
µi(ξ) · µj(ξ), e

ı(γ1−γ2)·ξ
〉

=
〈
0, eı(γ1−γ2)·ξ〉

= 0.

Thus if the vectors (24) are mutually orthonormal for j = 0, . . . , s, the family

{Tγfj}γ∈Zd;j=0,...,s are orthonormal.

Suppose, conversely, that the family {fj(x − γ)}γ∈Zd;j=0,...,s is orthonormal; we

wish to show that the vectors

µj(ξ) :=
[
µ0
j(ξ) µ1

j(ξ) · · · µq−1
j (ξ)

]T
(25)

are mutually orthonormal in Cq for j = 0, . . . , s and for a.e. ξ ∈ [0, 2π]d. We have〈
µi(ξ) · µj(ξ), e

ı(γ1−γ2)·ξ
〉

=
〈
Tγ1fi, Tγ2fj

〉
=

{
1 if γ1 = γ2 and i = j

0 otherwise.
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Thus if i 6= j, 〈
µi(ξ) · µj(ξ), e

ı(γ1−γ2)·ξ
〉

= 0.

Since this is true for any choice of γ1, γ2, this means that〈
µi(ξ) · µj(ξ), e

ıγ·ξ
〉

= 0 for all γ ∈ Zd.

In other words, all the Fourier coefficients of µi(ξ) · µj(ξ) are zero. Now we can

use the same technique as in part (i) to we show that µi(ξ) · µj(ξ) converges to

its Fourier series: there exists an L2 function G whose Fourier coefficients are the

Fourier coefficients of µi(ξ) ·µj(ξ). Then since G is the a.e. limit of its Fourier series,

G = 0 a.e., so G is in L1∩L2. Now we verify that µi(ξ) ·µj(ξ) ∈ L1[0, 2π]d. We have

1 =
〈
Tγfj, Tγfj

〉
=

1

(2π)d

∫
[0,2π]d

‖µj(ξ)‖2 dm(ξ),

whence ‖µj(ξ)‖ ∈ L2[0, 2π]d for each j. Now by Cauchy-Schwarz, we have∣∣µi · µj

∣∣ ≤ ‖µi‖ · ‖µj‖,

whence by Hölder’s inequality, µi · µj ∈ L1[0, 2π]d. Now since

µ̂i · µj(γ) = Ĝ(γ) for all γ ∈ Zd,

and G and µi · µj are both in L1, Corollary 8.27 in Folland gives us that these two

functions are equal a.e., so that µi ·µj is in L2, and hence is equal to the sum of its

Fourier series—zero. In the same way, we show that ‖µj‖ = 1 for each j = 0, . . . , s.

(iii) Suppose that the matrix (22) is unitary for a.e. ξ ∈ L2[0, 2π]d. Then the

family {Tγfj}γ∈Zd;j=0,...,q−1 is orthonormal, by part (ii). Suppose that this family does

not form an orthonormal basis—then there must exist some fq ∈ L2[0, 2π]d such that

fq ⊥ {Tγfj}γ∈Zd;j=0,...,q−1.

Then by part (ii), the vectors {µ0(ξ), . . . ,µq(ξ)} are orthogonal in Cq for a.e. ξ,

which is impossible, since we cannot have q + 1 orthogonal vectors in Cq.
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Conversely, if the family {Tγfj}γ∈Zd;j=0,...,q−1 is orthonormal; then by part (ii),

the corresponding vectors {µ0(ξ), . . . ,µq−1(ξ)} are orthonormal in Cq for a.e. ξ, and

hence the matrix (22) is unitary for a.e. ξ.

(iv) This part amounts to finding a unitary matrix whose entries are measurable

functions, and whose first row is given. The unitary property will ensure that the

norm of each row is 1, so that the entries are bounded, and hence in L2[0, 2π]d. The

entries of the rows to be determined will be defined initially on [0, 2π]d; they can

then be extended periodically to Rd in the natural way.

First, for each i = 0, . . . , q − 1, define

Ei :=
{
ξ ∈ [0, 2π]d : µiΦ(ξ) 6= 0

}
.

Now define F0 := E0, and for i = 1, . . . , q − 1 define

Fi := Ei \
i−1⋃
j=0

Ej.

The Fi partition [0, 2π]d into q disjoint, measurable subsets. Consider the constant

vector functions defined to be the standard basis vectors

ei(ξ) =
[
0(ξ) · · · 1(ξ) · · · 0(ξ)

]
, (26)

with the constant function 1(ξ) in the ith position, and the constant functions 0(ξ)

in all other positions. Note that these row vectors are linearly independent. We

construct the matrix function U(ξ) as follows: if ξ ∈ Fi, we fill the remaining

rows, in any order, with the row vectors ej, j 6= i. The resulting matrix must have

linearly independent rows, since the first row is linearly independent of the remaining

linearly independent rows: the first row being nonzero in the ith position, the other

rows having 0 in the ith position. We then apply the Gram-Schmidt process to this

matrix. The Gram-Schmidt process will produce rows whose entries are measurable

functions of ξ. Indeed, if we have q linearly independent vectors v1, . . . ,vq, then the

Gram-Schmidt process produces q orthonormal vectors u1, . . . ,uq according to the
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following formal determinant formula:

uj =
1√

Dj−1Dj

∣∣∣∣∣∣∣∣∣∣∣∣∣

v1 · v1 v2 · v1 · · · vj · v1

v1 · v2 v2 · v2 · · · vj · v2

...
...

. . .
...

v1 · vj−1 v2 · vj−1 · · · vj · vj−1

v1 v2 · · · vj

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (27)

where D0 = 1 and, for j ≥ 1, Dj is the Gram determinant

Dj =

∣∣∣∣∣∣∣∣∣∣∣

v1 · v1 v2 · v1 · · · vj · v1

v1 · v2 v2 · v2 · · · vj · v2

...
...

. . .
...

vj · v1 vj · v2 · · · vj · vj

∣∣∣∣∣∣∣∣∣∣∣
. (28)

The operations in calculating these determinants preserve measurability; this is a

way of seeing that the Gram-Schmidt process does indeed preserve the measurability

of the entries. Thus, for ξ ∈ Fi, we obtain a unitary matrix Wi(ξ), whose entries are

measurable functions of ξ, and whose first row is

µΦ(ξ) =
[
µ0

Φ(ξ) · · · µ1
Φ(ξ) · · · µq−1

Φ (ξ)
]
. (29)

Finally, we obtain the desired unitary matrix U(ξ) by taking

U(ξ) =

q−1∑
j=0

Wj(ξ)χFj(ξ),

where χFj(ξ) denotes the indicator function on the measurable subset Fj. Defining

µrj(ξ), for 1 ≤ j ≤ q−1 and 0 ≤ r ≤ q−1, to be the jr-th entry U(ξ)jr of the matrix

U(ξ), we obtain equation (23). We thereby obtain—under the correspondence (17)—

a collection {Φ,Ψ1, . . . ,Ψq−1} of elements whose Zd-translates form an orthonormal

basis for V1, as per part (iii) of this theorem.

Corollary 1.15. Given a multiresolution analysis {Vj}j∈Z associated with the dila-

tion matrix A, there exists a multiwavelet {Ψ1, . . . ,Ψq−1} consisting of q−1 elements,

where q = | detA|.
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Proof. For each j ∈ Z, let Wj denote the orthogonal difference Vj+1 	 Vj; i.e.,

Wj = {x ∈ Vj+1 : x ⊥ Vj}.

Then Wj is a closed subspace of L2(Rd), for each j. Since
⋃
j∈ZWj =

⋃
j∈Z Vj is dense

in L2(Rd), we have L2(Rd) =
∨
j∈ZWj; and since the Wj are mutually orthogonal,

this implies that L2(Rd) =
⊕

j∈ZWj.

Since Vj = Dj
A(V0) for each j ∈ Z, where DA is a unitary operator, it follows that

Wj = Dj
AW0. So if we can find a finite collection {Ψ1, . . . ,Ψq−1} of elements whose

Zd-translates form an orthonormal basis for W0, we will have a multiwavelet. But

from the preceding theorem, we know that there exist Ψ1, . . . ,Ψq−1 ∈ V1 such that

the Zd-translates of elements in the collection

{Φ,Ψ1, . . . ,Ψq−1}

form an orthonormal basis for V1; and since {TγΦ}γ∈Zd is an orthonormal basis for

V0, it follows that {Ψ1, . . . ,Ψq−1} is the desired multiwavelet.

We remark that since there are many different ways of building the unitary matrix

(23), the construction of a multiwavelet from a given MRA is highly nonunique.
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