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ORIGINAL RESEARCH

Using minimum bootstrap support for splits to construct
confidence regions for trees
Edward Susko
Genome Atlantic, Department of Mathematics and Statistics, Dalhousie University, Halifax,
Nova Scotia, Canada.

Abstract:  Many of the estimated topologies in phylogenetic studies are presented with the bootstrap support for each of
the splits in the topology indicated. If phylogenetic estimation is unbiased, high bootstrap support for a split suggests that
there is a good deal of certainty that the split actually is present in the tree and low bootstrap support suggests that one or
more of the taxa on one side of the estimated split might in reality be located with taxa on the other side. In the latter case the
follow-up questions about how many and which of the taxa could reasonably be incorrectly placed as well as where they
might alternatively be placed are not addressed through the presented bootstrap support. We present here an algorithm
that finds the set of all trees with minimum bootstrap support for their splits greater than some given value. The output is
a ranked list of trees, ranked according to the minimum bootstrap supports for splits in the trees. The number of such trees
and their topologies provides useful supplementary information in bootstrap analyses about the reasons for low bootstrap
support for splits.  We also present ways of quantifying low bootstrap support by considering the set of all topologies with
minimum bootstrap greater than some quantity as providing a confidence region of topologies. Using a double bootstrap
we are able to choose a cutoff so that the set of topologies with minimum bootstrap support for a split greater than that
cutoff gives an approximate 95% confidence region. As with bootstrap support one advantage of the methods is that they
are generally applicable to the wide variety of phylogenetic estimation methods.
Abbreviations: BP, bootstrap support; EF-1, elongation factor 1; minBP, minimum bootstrap support for a split
Keywords: bootstrap support, splits, confidence regions, statistical tests, phylogeny

Introduction
Bootstrap support or bootstrap probability (BP), Felsenstein (1985), for splits in a tree are frequently pre-
sented in the estimated trees of phylogenetic studies. A great deal of certainty about the estimated topology is
suggested when bootstrap support for all of the splits is large. In cases where some of the splits have low BP,
however, a number of questions arise as to which and how many of the taxa were supported as being in another
place in the tree and where they might alternatively be placed. The full bootstrap output provides information
that can be used to answer these questions. We utilize this information by finding the set of all trees with
minimum bootstrap support (minBP) for their splits greater than some given value. Our reason for focusing
attention on minBP is that since a tree is defined by all of its splits, for it to be included in a confidence region,
all of its splits should be well supported. Thus its minBP should be inline with what one expects from the true
tree. In some cases few trees will be included in the set, suggesting that while there is some uncertainty that a
subset of taxa was on one side of a split, there were only a few other places in the tree that it might have been
placed. In other cases many trees will be included in this set, suggesting that for the splits with low BP, there
was very little information about where some of the taxa might alternatively be placed.

A brief example is given in Figure 1 for the mammalian mitochondrial data considered previously in Goldman,
Anderson and Rodrigo (2000) and Shimodaira (2002). The estimated tree gives minimum BP to the split,
corresponding to a relatively small branch length, that groups cow, harbour seal and human together. Out of the
1000 bootstrap samples, 623 supported this split. The top ranked trees in terms of minimum bootstrap support
for a split (minBP) are given across rows; the branch lengths are arbitrary since these trees are calculated from
splits alone. The first tree, not surprisingly, is the estimated tree; this need not be the case although with few taxa
it is likely. The next tree has minBP 29.9% and corresponds to a nearest neighbour interchange of rabbit and
human in the estimated tree. The third ranked tree corresponds to a nearest neighbour interchange of rabbit
and mouse but has minBP only 6.5%. It is clear from the figures that only two topologies are well supported
and that the reason for the 62.3% BP for the grouping of cow, harbour seal and human is because there is
considerable uncertainty about whether the positions of human and rabbit should be switched. The splits with
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93% and 62% BP in the estimated tree are small
enough to create uncertainty about whether they are
real. It is thus unclear, from only the estimated tree
with BP for splits, whether a tree grouping human and
mouse might be plausible. However, the first three trees
in the Figure 1 give a 95% confidence region and none
of these group together human and mouse, indicating
that this hypothesis can be rejected. An idea imple-
mented in Cooper and Penny (1997) provides useful
supplementary to the estimated tree with BP. The 93%
split becomes 93(99) where 99 is the summed BP for
the split and nearest neighbour interchanges around
that split. Since rabbit is the neighbour of opposum
and mouse in the estimated tree, this presentation in-
dicates that there is little support for a grouping of hu-
man and mouse. However, for more diverse splits
ranging over several nearest neighbour interchanges,
this device would no longer provide enough informa-
tion to draw such inferences.

While methods to obtain a set of ranked trees based
on minBP will be useful as supplementary information
to BP for estimated splits, it is desirable to quantify the
level of uncertainty associated with a set of trees
through a confidence level. A( ) %1 100− ×α  confi-
dence region for the true topology is a data-depend-
ent, and hence random, set of topologies that contains
the true topology with probability 1−α . This differs
from a Bayesian credible interval both in its construc-
tion and in that the true topology is treated as fixed but
unknown, rather than random. Because of the duality
between testing and confidence region construction,
given a testing procedure, a ( ) %1 100− ×α  confi-
dence region can be constructed as the set of trees for
which a test of the null hypothesis that the tree is
correct gave a p-value ≥α . Existing methods for test-
ing whether topologies are correct include the the SH
test (Shimodaira and Hasegawa 1999), the SOWH
test (Swofford et al. 1996; Goldman, Anderson and

Figure 1: The estimated mammalian mitochondrial tree (first panel) with the top ranked trees in terms of minimum bootstrap support
given across rows. Bootstrap support is indicated for each of the branches. Since the ranked trees are constructed from splits alone,
branch lengths are arbitrary and taken as equal. Min BP is the minimum bootstrap support among splits in the tree. P gives the p-value
for the null hypothesis that the tree is correct based on a double bootstrap procedure.
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Rodrigo 2000), the GLS test (Susko 2003), the AU
test (Shimodaira 2002) and the related complete-and-
partial bootstrap test (Zharkikh and Li 1995). One
immediate way in which a set of trees ranked by minBP
can be converted to a confidence region is by using
them as input to any one of these existing methods. In
fact, since all of these tests require sets of candidate
trees, the methods presented here supplement them
by automating the construction of a set of candidate
trees.

As an alternative to using a set of trees ranked
by minBP as input to an existing testing procedure,
we can treat minBP as a test statistic of the null hy-
pothesis that a given tree is correct. This interpreta-
tion of minBP as a test statistic differs from the
conventional interpretation as a p-value. In any case,
as with any other test statistic, bootstrapping can be
used to approximate its distribution. In effect this re-
sults in a double bootstrap since for each bootstrap
sample, additional bootstrap samples are required to
obtain the minBP value. A 95% confidence region
of trees is given by the set of trees with minBP
larger than the 5th percentile of the bootstrap
distribution.

Considerable attention has been given to the ques-
tion as to what constitutes large BP. Felsenstein (1985)
and Felsenstein and Kishino (1993) consider 1-BP
for a split as an approximate p-value for a test of the
null hypothesis that the split is not present in the true
tree. Considering simulation settings where the prob-
ability of estimating the correct tree is large (95%),
Zharkikh and Li (1992) show that, with the criterion
that a tree be accepted as correct when its BP is greater
than 95%, the probability of failing to find any bifur-
cating tree satisfying this criterion it can be as low as
58%. Hillis and Bull (1993) indicate that BP is biased
downwards if it is interpreted as an estimate of the
probability that a true split will appear in the estimated
tree; Newton (1996) gives reasons for this. Efron,
Halloran and Holmes (1996) argue that the interpre-
tation as an approximate p-value is correct up to an
error of order 1/ n , where n is the number of sites.
Efron, Halloran and Holmes (1996) and Rodrigo
(1993) use double bootstrapping to improve the ac-
curacy of BP as an approximate p-value. This differs
from the use of the double bootstrap here which is
really a single bootstrap applied to a bootstrap test
statistic. It also differs in that the null hypothesis of
interest in each of these cases is that a split is not present
while it is that a particular tree is correct for the
methods presented here. The null hypothesis of a
correct tree is considered in Shimodaira (2002) who

uses multiple bootstrap samples of differing size to im-
prove the accuracy of BP as an approximate p-value.
In Shimodaira (2002), however, BP is the bootstrap
support for a tree among a prespecified set of candi-
date trees. With large numbers of trees in this candi-
date set, which is likely to be the case with larger taxa
sizes, BP for any given tree becomes very small and
the procedure cannot be expected to work very well.
What we attempt to exploit here is that BP for splits
will continue to show variation in data settings where
BP for trees has become too small and sparsely
distributed.

The methods presented here are generally
applicable to the wide variety of phylogenetic estima-
tion methods. Required as input is a set of trees esti-
mated in some way for the original data set,
bootstrapped data sets and possibly double
bootstrapped data sets when minBP-based confi-
dence regions are desired. Software will be made
available at http://www.mathstat.dal.ca/~tsusko
that will produce files with the required bootstrapped
data sets and, based upon the input estimated trees,
will construct lists of a prespecified number of trees
ranked according to minBP, calculate all trees with
minBP at least as large as a cutoff and/or calculate the
appropriate cutoff using the double bootstrap output.

Methods

Obtaining Sets of Trees From
Sets of Splits
Buneman (1971) established systems of splits as an
alternative and equivalent representation of a
phylogenetic tree. A split corresponds to a branch or
an edge on the tree and is a partition of the set of all
taxa in the tree into two subsets or sides of taxa. For
instance, in the first panel of Figure 1, the split
corresponding to the branch with 62% BP has cow,
harbour seal and human in one set A and rabbit,
opposum and mouse in the other set, Ac. A pair of
splits S A A S A Ac c

1 1 1 2 2 2= =| , | ,  are compatible
if at least one of the pairwise intersections
A A A A A A A Ac c c c

1 2 1 2 1 2 1 2, , and  is the empty set. A
phylogenetic tree satisfies that all of its splits are
pairwise compatible and it is sufficient for a set of
distinct splits to be pairwise compatible for it to define
a tree. Since there are 2m-3 branches in an unrooted
tree, where m is the number of taxa, 2m-3 distinct
splits are required to define a tree.

Given a set of splits the algorithms presented here
find all subsets of splits that define a tree. Splits
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corresponding to terminal branches can be ignored
since they are present in all trees and compatible with
all splits. It thus suffices to determine all subsets of
m – 3 distinct pairwise compatible splits correspond-
ing to internal branches (at least two elements on both
sides of the split).

The discussion above was for binary trees. To
restrict attention to such trees we treat a multifurcating
tree as the set of binary trees with 0 edge lengths that
gives rise to it. In terms of splits, a multifurcating tree
is defined by  k < m − 3  compatible splits and we
represent it as the collection of m − 3  splits that are
compatible and contain the k compatible splits.

Given a set of splits, S i ki , , ,= 1…  a simple algo-
rithm that can be used is to find all sets of r compatible
splits successively for r m= −1 3, ,… . The sets of
compatible splits with r m= −3  gives the set
of trees.Given the sets of r compatible splits,
C Cs1, , ,…  the sets of r +1  compatible splits are
found by finding, for each of these sets, the set of splits
compatible with it. The unions of the Cj with the sets
of splits compatible with them give the sets of r +1
compatible splits. The difficulty with this approach is
that the number of sets of r compatible splits can get
very large for intermediate r.

An alternative algorithm updates a current set
C S Si ir
= { , , }

1
…  (i1 < · · · < ir) of splits as follows

1. Obtain or update the set of splits, P, that are
compatible with the splits in C.

2. If r < m – 4, add the first split in P to C and
go to 1.

3. If r = m – 4, each split in P together with C
gives a tree. Store the trees and update C by set-
ting Sir  to the first split Si, i > ir compatible with
the rest of the splits in C. Go to 1.
Much less storage is required for this algorithm but

compatibility of splits requires checking more fre-
quently. Some additional computational economies can
be achieved. For instance, a k k×  compatibility
matrix, assigning a 1 or a 0 to the ij position according
to whether Si and Sj are compatible or not, can be
constructed at the beginning so that further checks on
compatibility require checking the ijth entry of the com-
patibility matrix alone. For the application of primary
interest here, determining all trees with minBP at least
as large as some threshold ζ(< 0.5), any split with
support larger than 1 – ζ, must be in the final tree and
thus give a set of splits that can be placed in C initially
and never removed.

Given a compatibility matrix, computation requires
a sequence of binary comparisons to update the cur-

rent set C and compatibility set P. The worst case
time-complexity would arise when all choices
of ( )3

k
m− splits from the k are compatible. In this

case, each current set C of size r would have compat-
ibility set P of size k r− . In addition, each of the
possible ( )r

k  compatible sets of size r, r < m – 4,
would arise in the algorithm. For each of these, the
update step 2 would check compatibility of the first
split in P with the rest of the k r− −1  splits in P. Thus
the number of comparisons considered would be
Σr

m
r
k

=
−
1
4 ( ) ( k r− −1 ) which indicates that the algo-

rithm can be intensive when a large numbers of trees
can be constructed from the initial set of splits.

A Double Bootstrap as a
Single Bootstrap
The approach we take here is to treat minBP not as a
p-value but as a test statistic. A tree is included
in a ( ) %1 100− ×α  confidence region if its minBP is
greater than the αth quantile of the distribution of
minBP. Since the distribution of minBP is difficult to
calculate analytically, a bootstrap must be used to
approximate it.

Given an estimated tree, B nonparametric bootstrap
samples are generated and, for each of these sam-
ples, the minBP value for the originally estimated tree
is obtained giving B minBP values. The resulting αth
quantile of the bootstrap distribution or α × Bth sorted
minBP value from the bootstrap samples is used as
the cutoff for splits to include in obtaining the confi-
dence region.

To outline why this use of the nonparametric
bootstrapping gives a reasonable cutoff, it is useful to
characterize the bootstrapping process as sampling of
vectors of character states from the empirical
distribution. Each bootstrapped data set is obtained
by independently selecting vectors of character states
(columns of a sequence alignment) from the
probability distribution, F̂ , that assigns probability
1/n to each of the observed vectors of character states
(each of the positions in the alignment). Since the
bootstrap generates data from F̂ , the proportion of
bootstrap samples with minBP larger than ζ should be
approximately

ˆ

ˆ

(minBP ζ)
ˆ (BP ζ, for allsplits s in )

F

F

P

P T

>

= >       (1)

In principle, B can and should be chosen large
enough that the proportion of minBP larger than ζ is
equal to (1) up to a negligible error. In practice,
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particularly in the case of expensive phylogenetic esti-
mation procedures, this is often not the case.

Under quite general conditions, F̂ , the empirical
distribution, converges to the actual distribution, F, of
vectors of character states implied by the random
substitution process and the true tree. We can usually
think of the true tree in a variety of different ways as a
function of F, T(F). For instance, T(F) is the tree that
maximizes the expected log likelihood and T(F) is also
the tree that minimizes the expected sum of squared
pairwise distances. Which characterization is more
appropriate depends on the estimation procedure
under consideration. For instance, with likelihood es-
timation, thinking of T(F) as the maximizer of expected
log likelihood is more appropriate, since the expected
log likelihood for a single vector of character states
from F̂ is just the log likelihood, ˆ( )T F is the
maximum likelihood estimate of the tree for the data.
Since ˆ ≈F F for large samples, the expectation is that

ˆ
ˆ(BP ζ, for all splits  in ( ))

 (BP ζ, for all splits  in ( ))
F

F

P s T F
P s T F
>

≈ >
   (2)

Since the left hand side of (2) is approximately the
proportion of bootstrap samples with minBP larger
than ζ, if the cutoff ζ is chosen as the αth quantile of
the bootstrapped minBPs, we have

ˆ
ˆ1 (BP , for all splits  in ( ))

 (BP , for all splits  in ( ))
 ( ( ) in confidence region)

F

F

F

P s T F
P s T F
P T F

−α= >ζ

≈ >ζ
=

 (3)

where the last equality follows from the fact that the
true tree, T(F), is in the confidence region if and only
if all of its splits have BP greater than ζ. Thus the set of
trees with minBP larger than the αth quantile of the
bootstrap distribution gives an approximate
( ) %1 100− ×α  confidence region.

The use of bootstrapping actually requires a dou-
ble bootstrap. For each bootstrap sample at the top
level giving the minBP values for the estimated tree
across bootstrap samples, additional bootstrap sam-
ples have to be taken to obtain the minBP values. This
can quickly become costly. For the example applica-
tions here, we used 100 bootstrap samples in both
levels of the bootstrapping process. Including the origi-
nal data set, this requires 10101, estimations of trees.

Results
The first two examples that we consider have been
considered previously in the literature on confidence

regions estimation and testing (Shimodaira and
Hasegawa, 1999; Shimodaira, 2002; Goldman,
Anderson and Rodrigo, 2000) and involve larger data
sets and smaller numbers of taxa. The third, considers
an archaebacterial elongation factor 1 1α α( )EF −  data
set and illustrates issues that arise with a larger number
of taxa.

Mammalian Mitochondrial Data
To determine a minBP cutoff for a 95% confidence
region for the mammalian mitochondrial data
considered earlier, 100 bootstrap samples were
generated from the original data set. From each of
these samples, another 100 bootstrap samples were
generated to obtain the minBP value for the estimated
tree. This resulted in 100 minBP values. The minBP
cutoff was taken as the fifth percentile of the minBP
values which turned out to be 6%; the minBP cutoff
for a 90% confidence region was 15%. Based upon
this, a 95% confidence region is given by the first 3
ranked trees with the third being a borderline inclusion

An alternative way of characterizing the support
for a ranked set of minBP trees is through p-values.
We can define a test of the null hypothesis that a given
tree is the correct tree by rejecting that hypothesis at
the α level if and only if the tree is not in a
( ) %1 100− ×α  confidence region. The p-value for this
test is the smallest α level for which the null hypothesis
can be rejected which, in the present case, is the small-
est α for which the tree is not in a ( ) %1 100− ×α
confidence region. Since a tree is in the confidence
region as long as its minBP is larger than the cutoff for
that region, and the cutoffs are determined from the
bootstrapped minBPs, the p-value is found by
obtaining the largest bootstrapped minBP less than
the minBP for the given tree. If this bootstrapped
minBP is the pth quantile of the sample of bootstrapped
minBPs then the p-value is p. For the mammalian
mitochondrial data, the p-values are given in
Figure 1.

Table 1 gives the p-values from Shimodaira (2002)
for a number of topology tests. The 15 topologies are
listed in Table 2 and are all of the topologies with cow
and harbour seal split from the rest of the taxa. Here
PP indicates approximate Bayesian posterior prob-
abilities taken from Table 1 of Shimodaira (2001). BP
is for the tree rather than a split. KH gives the p-val-
ues for the test of Kishino and Hasegawa (1989) and
AU gives the p-values for the test of Shimodaira
(2002). SH and WSH give p-values for the unweighted
and weighted versions of the SH test (Shimodaira and
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Hasegawa, 1999; Shimodaira, 1993, 1998; Buckley
et al., 2001). The p-values for the GLS test are from
Table 1 of Susko (2003). One can see that the minBP
confidence region includes fewer topologies than most
of the other methods, some of which, like the SH test,
are known to be conservative. The p-values are most
similar to the those from the BP test. Here BP for the
tree is being used as a p-value. This is not very
surprising since the two approaches are similar. How-
ever, with a larger number of potential trees than can
arise with 6 taxa, it is reasonable to expect that
bootstrap support for any given tree will be very small.
In contrast, bootstrap support for splits will continue
to show variation that can be used to distinguish
between topologies.

HIV Data
The HIV data set was considered previously in
Goldman, Anderson and Rodrigo (2000) and Susko
(2003). It consists of a set of six homologous
sequences, each consisting of 2000 base pairs from
the gag and pol genes for isolates of HIV-1 subtypes
A, B, D and E: A1 (Q23), A2 (U455), B (BRU), D
(NDK), E1 (90CF11697) and E2 (93TH057). For
the GLS test and the minBP p-values, the F84 model
as implemented in the PHYLIP package, Felsenstein,
(1993), was used with gamma rate correction. The
transition/transversion ratio was estimated as 4.70 and
the α parameter for the gamma rate distribution was
estimated as 0.23 in TREE-PUZZLE version 4.02
(Strimmer and von Haeseler 1996). The four

topologies that had minBP greater than zero are listed
in Table 3.

The particular null hypothesis of interest in
Goldman, Anderson and Rodrigo (2000) and Susko
(2003) was the hypothesis that the second topology
listed in Table 3 was the true topology. For the SOWH
and SH tests reported in Goldman, Anderson and
Rodrigo (2000) the SOWH test gave a p-value of
0.002 and the SH, a conservative test, gave a p-value
of 0.26. The GLS p-value reported in Susko (2003)
was 0.005. The minBP for this topology was 9.5%
giving a p-value of 0.01.

Interesting features of this analysis include a com-
paratively large minBP p-value, a large minBP cutoff

Table 1: The p-values for the hypothesis that the tree is correct for the 15 trees with cow and harbour seal split
from the rest. Trees are ranked according to log likelihood values as in Table 3 of Shimodaira (2002) based upon
fits using PAML (Yang, 1997) and are listed in Table 2. PP denotes approximate Bayes posterior probabilities, KH,
AU, SH and WSH denote p-values from the KH, AU, SH and weighted SH tests. The minBP values for each tree
is given as is the p-value based on bootstrapped minBP values from 100 bootstrap samples each using 100
bootstrap sample to obtain a minBP value.
Tree PP BP KH AU SH WSH GLS minBP p-value
1 0.934 0.579 0.039 0.789 0.944 0.948 0.0410 62.3 0.67
2 0.065 0.312 0.361 0.516 0.799 0.791 0.0380 29.2 0.31
3 0.001 0.036 0.122 0.114 0.575 0.422 0.0353 1.3 0.02
4 0.000 0.013 0.044 0.075 0.178 0.210 0.0024 6.5 0.05
5 0.000 0.035 0.066 0.128 0.149 0.299 0.0013 5.6 0.03
6 0.000 0.005 0.049 0.029 0.114 0.105 0.0050 5.6 0.03
7 0.000 0.017 0.051 0.101 0.112 0.252 0.0013 1.4 0.02
8 0.000 0.001 0.032 0.009 0.073 0.050 0.0050 1.0 0.01
9 0.000 0.000  0.003 0.000 0.032 0.015 0.0024 0.0 0.00

10 0.000 0.003 0.019 0.028 0.034 0.124 0.0013 1.0 0.01
11 0.000 0.000 0.010 0.003 0.018 0.069 0.0013 0.0 0.00
12 0.000 0.000 0.003 0.001 0.006 0.033 0.0013 1.3 0.02
13 0.000 0.000 0.003 0.001 0.006 0.034 0.0013 0.0 0.00
14 0.000 0.000  0.001 0.005 0.003 0.013 0.0013 1.0 0.01
15 0.000 0.000 0.001 0.002 0.002 0.009 0.0013 1.0 0.01

Table 2: The topologies for the 15 trees in Table 1.
Tree Topology
1 ((human,(seal,cow)),rabbit),mouse,opossum
2 (human,((seal,cow),rabbit)),mouse,opossum
3 (human,rabbit),(seal,cow),(mouse,opossum)
4 (human,(seal,cow)),(rabbit,mouse),opossum
5 human,((seal,cow),(rabbit,mouse)),opossum
6 human,(((seal,cow),rabbit),mouse),opossum
7 (human,(rabbit,mouse)),(seal,cow),opossum
8 (human,mouse),((seal,cow),rabbit),opossum
9 ((human,(seal,cow)),mouse),rabbit,opossum

10 ((human,mouse),rabbit),(seal,cow),opossum
11 ((human,rabbit),mouse),(seal,cow),opossum
12 ((human,mouse),(seal,cow)),rabbit,opossum
13 human,(((seal,cow),mouse),rabbit),opossum
14 (human,rabbit),((seal,cow),mouse),opossum
15 (human,((seal,cow),mouse)),rabbit,opossum
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of 31% for a 95% confidence region and the possibil-
ity that the F84 model is not flexible enough for the
data. Given the results from other tests and the large
drop in minBP from the first topology to the second, it
is expected that increased double bootstrap sampling
would reduce the p-value for all topologies except the
first; with 100 bootstrap samples p-values are neces-
sarily in the set {0.01,0.02, ,1.00}… . However, a
large number of bootstrapped minBP values would
clearly be required. Without very significant
computational resources, obtaining a fine resolution
for minBP p-values is infeasible.

As discussed earlier, a double-bootstrap-free
minBP cutoff is 5% and comes from the conventional
interpretation of 1-BP as a p-value for the null
hypothesis that a split is not present. In the present
example this seems inappropriate. The results of the
other tests indicate that there is very little support for
the second and third topologies, which would have to
be included with this cutoff, and the results of
bootstrapping the minBP values indicate that values
as small as 5% are quite unlikely.

An alternative approach to the nonparametric
bootstrap is a parametric bootstrap where the
bootstrapped minBP values are obtained from
bootstrap data sets simulated from the fitted model
with estimated parameters. A possible advantage of
the nonparametric bootstrap is that since data is being
generated from the empirical distribution it should be
giving reasonable accurate approximations to the prob-
abilities that minBP is larger than a value, even if the
assumed substitution process is incorrect. If the tree
estimation procedure is used with a misspecified model
that is still “close enough” to the generating process to
allow distinctions between competing topologies,
reasonable results can be obtained. In the present case,
an F84 model was used where Goldman, Anderson
and Rodrigo (2000) used the more flexible GTR
model. The similarity of results suggests that the model
was “close enough”.

Archaebacterial EF1-alpha Data
With 13 taxa, the number of possible trees for the
archaebacterial data set is 13,749,310,575, so that

this data set serves to illustrate some of the difficulties
in inference with larger numbers of taxa. The data set,
which had 269 sites, was considered previously in
Susko et al. (2003) and additional details are available
there. Phylogenies were inferred by first estimating
a maximum likelihood distance matrix using TREE-
PUZZLE with an 8 category gamma distribution
(DGE) model of rate variation and the PAM amino
acid substitution matrix (Dayhoff and Eck, 1968;
Dayhoff, Schwartz and Orcutt 1979). The Fitch-
Margoliash method (implemented in FITCH,
Felsenstein 1993) was used to infer trees from the
distance matrices. There were 60 trees that had minBP
larger than 5%, complicating summary of the
information. The estimated tree and top 9 ranked trees,
in terms of minBP, are given in Figure 2; longer names
for the taxa are given in Table 4. Two other trees not
indicated also had minBP 14.7.

The ranked trees, the fourth in particular, give an
indication of reasons that the number of trees can be
expected to grow quickly with larger numbers of taxa.
The second ranked tree indicates that there is signifi-
cant support for Af being closer to the Tc, Tw, Ph
split. The third ranked tree indicates that there is sup-
port for the positions of Ao and Pa being switched.
The fourth tree, combines both of these alternative
splits, placing Af closer to the Tc, Tw, Ph split and
switching the positions of Ao and Pa from what they
were in the estimated tree. Generally, if a number of
alternative splits are supported in separated regions
of the tree, as is increasingly likely with larger num-
bers of taxa, any combinations of those splits will pro-
duce a tree that is well supported.

Based on a double bootstrap with 100
bootstrapped data sets at both levels, the cutoff
minBP for a 95% confidence region was found to be
1% for this data set. Here, in contrast to the HIV data
set, the cutoff was less than the 5% cutoff suggested

Table 3: The topologies with minBP larger than zero for
the HIV data set.
       Topology minBP p-value
A1,(A2,(E1,E2)),(D,B) 83.7 0.47
A2,(A1,(E1,E2)),(D,B) 9.5 0.01
A1,A2,((D,B),(E1,E2)) 6.8 0.01
E2,(E1,(A1,A2)),(D,B) 2.0 0.01

Table 4: Full names for the 13 taxa in the archaebacterial
EF-1α data set.
S Sulfolobus solfataricus
D Desulfurococcus mobilis
Ao Aeropyrum pernix
Pa Pyrobaculum aerophilum
Tc Thermococcus celer
Ph Pyrococcus horikohii
Pw Pyrococcus woesei
Af Archaeoglobus fulgidus
Mj Methanococcus jannaschii
Mv Methanococcus vannielii
Hh Halobacterium halobium
Hm Haloarcula marismotui
Ta Thermoplasma acidophilum
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by the BP test. Part of the reason for this has to do
with the increased uncertainty about the tree for this
data set. The small branch lengths and small BP
suggest a generating tree that is closer to the “bound-
ary” between trees in tree space, implying that BP is
expected to be smaller for the generating tree. Even if
the generating tree was a comparable distance from the
boundary as for the HIV data set, because of the larger
number of splits, the minimum BP over all splits can
be expected to be smaller. The use of minBP as a test
statistic adjusts for the multiple comparisons implied
by considering a number of BPs instead of just one.

Trees of Groups
The 264 trees with minBP greater than or equal to the
1% cutoff for a 95% confidence region is too large for
easy presentation and some extraction of summary

information from this set is required. A simple summary
is provided by defining groups of taxa and presenting
all trees in the confidence region that are compatible
with those groups as trees of groups where taxa labels
are replaced by group labels. An example is given in
Figure 3 for the EF-1α data set with the groups Af,
DSAP {D, S, Ao, Pa}, H {Hm, Hh}, M {Mj, Mv},
Ta and P {Tc, Ph, Pw}. The routine for obtaining this
set of trees was obtained through the following. For
each tree,
1. For each group, the split with the group on one

side must be present in the tree for it to be
compatible with the groups.

2. If the tree is compatible with the groups, for
each group, a single representative is selected and
the splits between representatives are
determined.

Figure 2: The estimated EF-1α tree (first panel) with the top ranked trees in terms of minimum bootstrap support given across rows.
Bootstrap support is indicated for each of the branches. Since the ranked trees are constructed from splits alone, branch lengths are
arbitrary and taken as equal. Min BP is the minimum bootstrap support among splits in the tree. P gives the p-value for the null hypothesis
that the tree is correct based on a double bootstrap procedure.
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3. The splits for the group representatives
obtained in 2 give a tree for the groups with the
names of the representatives replaced by the group
names.
In the set of 264 trees for all of the taxa, 72 were

incompatible with the groups indicated. Many more
of them corresponded to the same tree with groups as
taxa but with some variation of splits within groups.

Since the probability is 0.95 that the correct tree is
contained in a 95% confidence region of trees, the
probability that the correct tree of groups is contained
in the set of distinct trees of groups corresponding to
the trees in the region is 0.95 as well. Thus this set
provides a confidence region for the trees of groups.
This is true for confidence regions generally, not just
those constructed using minBP. Note, however, that
an assumption is being made about the existence of
groups in the tree.

The above approach provides a way of extracting
summary information when the confidence region of

trees is large. However, the knowledge that groups
exist can be used to create smaller confidence regions.
The same arguments as were given in (1) and
(2) apply with T replaced by splits of groups. In the
original approach, the minimum bootstrap support is
over both within and between groups splits, while in
this approach the minimum is only over between group
splits. Consequently the 5% cutoff coming from a
double bootstrap can be expected to be larger and
thus the confidence region of trees of groups will be
smaller than the set extracted from the confidence set
of trees.

In principle, estimation in this case should be
constrained: trees should be estimated with the splits
of groups present whether this is the case for the un-
constrained estimated tree or not. As an approxima-
tion that avoids recomputing trees for every choice of
groups, one can ignore bootstrap samples that give
trees that are incompatible with the group splits. Since
any samples where the groups were present in the tree

Figure 3: The EF-1α trees for groups Af, DSAP {D, S, Ao, Pa}, H {Hm, Hh}, M {Mj, Mv}, Ta and P {Tc, Ph, Pw}. All of the trees with minBP
greater than or equal to 1 are indicated. The trees, ranked in terms of minBP, are given across rows.
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give the same unconstrained estimate as the constrained
estimate, and since these constitute a majority of the
cases, the resulting minBP cutoff should be approxi-
mately the same as if the more appropriate constrained
estimation had been used.

For the EF-1α data, the cutoff was found to be
1% as it was for confidence regions for the original
trees. Thus the confidence region for groups of trees
is given in Figure 3 as it was when these were
extracted from the trees of taxa.

Discussion

Bootstrap Support for Trees
The methods presented here are most closely related
to a variety of methods that use bootstrap support for
topologies to construct confidence regions, including
those discussed in Sanderson (1989), Efron, Halloran
and Holmes (1996), Rodrigo (1998), Zharkikh and
Li (1995) and Shimodaira (2002). BP for a topology
can alternatively be thought of as BP jointly for its splits.
Since minBP is for a single split a natural concern is
that some of the multivariate information in BP for

topologies has been lost. This is a bit misleading since,
for a tree to be included in the confidence region, all
of its splits must have arisen with reasonable frequency
(minBP must be above a threshold) and the splits must
be compatible; these are properties the splits must
jointly satisfy. This is indicated in Table 5 where for
the mammalian mitochondrial and HIV data the BP
and minBP for topologies with non-zero BP are
indicated. In this case they are almost the same because
there were so few topologies that were supported. As
illustrated in Figure 4, for the EF-1α data the situation

Table 5: Bootstrap support and minimum bootstrap
support for trees arising in 1000 bootstrap replications
for the HIV and mammalian mitochondrial data.

HIV Mammal
BP minBP BP minBP
83.7 83.7 59.2 59.9
9.5 9.5 33.7 33.8
6.6 6.8 5.6 5.6
0.2 0.2 0.7 0.8

0.6 1.3
0.1 0.8
0.1 0.1

Figure 4: A scatter plot and boxplot of the minBP values and BP values for trees arising in 1000 bootstrap replicates for the EF1-α data.
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is a little different. The BP and minBP values correlate
well but the BP values associated with the lower
supported topologies show too little variation to
make distinctions; there were 60 trees with less
than 1% BP.

Other BP methods rank bootstrap support for trees
in order of some distance from the “best” tree (cf Sand-
erson 1989), for instance, the majority rule consensus
tree of the bootstrap trees. Difficulties with this
approach include the choice of distance. In addition,
Figure 1 of Rodrigo (1998) gives an interesting exam-
ple where the symmetric distance between the esti-
mated topology for a data set and an alternative is too
small for the alternative to be rejected, even though
the data clearly do not support the alternative. Never-
theless, this approach is well motivated as similar to
the percentile method (cf Efron and Tibshirani 1993)
for bootstrapping a mean. However, the resulting 95%
confidence interval for the mean would include all val-
ues between the 2.5th and 97.5th percentiles of the
bootstrap distribution; it would not be the discrete set
of bootstrapped means that arose in bootstrap sam-
ples. By analogy, the BP methods that rank bootstrap
support for trees in order of distance should include
all trees that are within that distance not just those that
occurred in bootstrap samples. This is particularly
important when small numbers of bootstrap samples
are taken (with 1000 bootstrap samples, at most 1000
trees can be in the region). The algorithms presented
here provide a way of expanding the set of trees to be
checked for small distance while at the same time
restricting that set in a sensible way so that undo check-
ing of trees that are unlikely to be included is not done.

Other ways of using BP include constructing the
bootstrap profile, or set of all topologies that arose in
bootstrap sampling (Rodrigo et al 1993; Rodrigo
1998). Calculation of the bootstrap profile has the
advantage of not requiring determination of appropri-
ate cutoff values for inclusion with the tradeoff that
more trees are included than is necessary. It is useful
as a conservative approach since if a topology is not
included in the set, it would not be in the smaller set
that only included topologies with BP above some
threshold. This approach could be used with minBP
as well which has the advantage of not requiring a
double bootstrap for determination of minBP cutoffs.
A similar approach considers the smallest set of topolo-
gies, ranked from highest to lowest BP, that give a
cumulative total of 95% bootstrap support. Once again
this is similar to the percentile method of bootstrapping
that includes all parameter values, topologies in this
case, that are in the highest density region of the

bootstrap distribution of the parameters. It is interest-
ing to note however that the cutoffs that result from
this procedure will tend to be quite different from the
5% cutoff of the BP test discussed as first-order
correct in Efron, Halloran and Holmes (1996) and
Shimodaira (2002). For instance, for the EF-1α data,
in 1000 bootstrap samples, there were 47 trees that
appeared once and another 11 that appeared twice
giving a cutoff of 0.2%.

In theory, if it were possible to calculate the limiting
BP for each topology as the number of bootstrap sam-
ples increases without bound, this value should be used
as BP. The fact that this cannot be done leads to diffi-
culties in high-uncertainty problems as has been noted
in Lutzoni (1997), Cunningham (1997) and Rodrigo
(1998). If 1000 bootstrap samples are taken, at most
1000 trees can be included in the confidence region,
even if the uncertainty present in the data is so great
that 1,000,000 trees should be included. Using the
cumulative total of 95% rule, if 800 topologies arose
a single time in 1000 bootstrap samples, which should
be included? Phrased in terms of limiting BP, when the
appropriate but unknown confidence region contains
1,000,000 trees the BP for some of those trees must
be at most 0.0001% and more than 1,000,000
bootstrap samples would be required to determine
which trees these are. The use of minBP can prove
useful here since the set of trees for 1000 samples can
be larger than 1000 due to compatible splits. Every
bootstrap sample that gives a tree gives all of its splits
and so the minBP for a tree will always be bigger than
the BP, whether with finite bootstrap samples or in the
limit. In high-uncertainty problems, a topology that has
non-zero limiting BP will have non-zero limiting minBP
as well and the probability that its minBP will be posi-
tive in any given set of finite bootstrap samples will be
larger than the corresponding probability for BP.

High-uncertainty problems where large numbers of
trees should be included in a confidence region can
only arise with substantial numbers of taxa but diffi-
culties with low BP can arise with small numbers of
taxa as well if the true tree is poorly resolved. We
illustrate this in Figure 5 where the cumulative distri-
bution functions of minBP and BP for the true tree are
plotted for a six taxon tree of the same shape as the
estimated mammalian mitochondrial tree but with
differing levels of resolution due to the smaller or larger
middle branches a and b. Each cumulative distribu-
tion was approximated through simulation. The BP
and minBP values for the true tree was calculated for
1000 simulations with Jukes-Cantor maximum likeli-
hood estimation being applied to sequences of 1000
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Figure 5: Plots of the cumulative distribution of bootstrap support for the two tree. Each curve gives the probability that bootstrap
support is less than or equal to the corresponding quantity on the x-axis. Curves are given for both the bootstrap support of the topology
and the minimum bootstrap support of the splits of that topology. The true generating tree was the same as the estimated tree for the
mammalian mitochondrial data in Figure 1, but with branch lengths

((seal : 0.1, cow : 0.1) : a, human : 0.1) : b, (rabbit : 0.1, (mouse : 0.1, opposum : 0.1) : a)

The internal branch lengths a and b were allowed to vary. The cumulative distribution functions were estimated from 1000 nucleotide
data sets simulated under a Jukes-Cantor process each with B = 100 bootstrap replicates.

nucleotides simulated under a Jukes-Cantor substitu-
tion process; 100 bootstrap samples were considered
in each simulation. The cumulative distribution
function, with the y-value giving the probability that
BP (minBP) is less than or equal to the corresponding
x value, was estimated based on the observed pro-
portions in the simulations. The appropriate bootstrap
cutoff value for a 95% confidence region is the value
of BP (minBP) such that the probability of being less
than or equal to it is 0.05. If every topology with
BP (minBP) greater than this value is included in
the confidence region, the probability of type I error,
not including the true topology in the confidence
region, is 0.05.

One interesting set of observations comes by com-
parison with the interpretation of BP as a first-order
correct p-value (Efron, Halloran and Holmes 1996;
Shimodaira 2002). According to this interpretation, a
cutoff of 5% is appropriate. The case that best corre-
sponds with theory is when a = 0.1 and b = 0.0001.
In the language of Efron and Tibshirani (1998) and
Shimodaira (2002), in this case the true tree is close
to the boundary of regions between topologies but,
with only one branch being close to 0, not as near a
boundary with a great deal of curvature as a tree that
had more unresolved splits. Still, for this case the prob-
ability that the true tree will be included in a 95% con-
fidence region if a 5% cutoff is used is estimated as
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0.84 for BP and 0.87 for minBP. For the other cases
of poorly resolved trees a = 0.005, b = 0.001 and
a = 0.001, b = 0.001, the probabilities that the true
tree will be included in a 95% confidence region using
a 5% cutoff for BP (minBP) are 0.80 (0.63) and 0.21
(0.49). While this suggests that the 5% cutoff is gen-
erally too large, the well resolved case when a = 0.01
and b = 0.01 saw BP (minP) values greater than 5%
1000 (999) times in the 1000 simulations.

The other interesting observation comes from con-
sidering the cutoffs corresponding to a 95% confidence
region: the 5th percentiles of the distributions. For the
poorly resolved cases a = 0.01, b = 0.0001, a = 0.005,
b = 0.001 and a = 0.001, b = 0.001 the cutoffs for
BP (minBP) were 1 (2), 0 (1) and 0 (1). Note that 100
bootstrap samples were being considered in each
simulation. Each of these simulations gives an unbiased
estimate of the limiting BP (minBP) with infinite
bootstrap samples. However, if the 5th percentile of
the distribution of the target limiting BP (minBP) is
between 0 and 1%, which is almost certainly the case
here, 100 bootstrap samples are not sufficient to deter-
mine it. In short, in each of these poorly resolved cases,
more bootstrap samples are required to have enough
resolution to determine an appropriate BP cutoff for a
95% confidence region. However, because the cu-
mulative distribution of minBP moves away from 0
faster than the distribution for BP, less bootstrap sam-
pling effort is required to obtain the same resolution.

In practice, since the true topology is not known,
the cumulative distribution functions of Figure 5 that in
theory give the appropriate cutoffs cannot be calcu-
lated. However, since the empirical distribution of site
patterns approximates the distribution based on the
true but unknown topology, bootstrap sampling from
it can be used to determine the appropriate cutoffs
which is the essential idea behind the double bootstrap
proposed here. It is valuable to note that these ideas
are applicable to BP just as well as to minBP. In cases
where the tree is not too poorly resolved there is some
merit in considering the double bootstrap approach
applied to BP, since there are concerns about a loss of
multivariate information due to the restriction of atten-
tion to BP for splits. However, as the examples illus-
trate, in poorly resolved cases, more bootstrapping
effort will generally be required to obtain an
appropriate cutoff.

Additional Comments
With or without a confidence region interpretation the
bootstrap methods presented here provide useful
supplementary information to bootstrap support values,

indicating what kinds of alternative splits had
reasonable levels of support. As a confidence region
construction procedure, with smaller numbers of taxa
the HIV and mammalian mitochondrial analyses gave
results comparable to existing confidence region
construction methods. Most such methods require
input of sets of trees for construction of confidence
regions. One alternative use of the sets of trees with
minBP greater than a threshold is as input to some
other confidence region construction method. It should
be noted that in some cases this is not strictly justified.
For instance, the theory motivating the SH and AU
tests assume a fixed set of trees, not a data determined
set. In contrast the SOWH and GLS methods include
in their confidence sets all trees that have large
likelihood or small generalized sum of squares
respectively. While in principle these routines should
include all trees meeting a certain criterion they can
only recognize those trees that meet the criterion among
the input trees. Using the set of trees with minBP larger
than a fairly small threshold automates the search for
trees that might be expected to be included.

An undesirable attribute of the minBP confidence
region construction method is that it fails to use addi-
tional information such as likelihood or branch lengths.
However, this is unavoidable for any method that can
be used in conjunction with a wide array of different
methods including parsimony, likelihood and distance
methods. Still it seems reasonable to expect that
confidence region methods that use additional infor-
mation will give smaller confidence regions; results for
the HIV and mammalian mitochondrial data sets
suggest comparable inferences however. Another
potential drawback is that very large sets of trees can
result with larger numbers of taxa. In this case a list of
a fixed number of trees with top-ranked minBP can
still be useful in providing supplementary information
to bootstrap support.

Inference with larger numbers of taxa generally re-
quires careful consideration. A multiple comparisons
issue arises in that with larger numbers of taxa there
are larger numbers of splits and thus the probability of
finding a false split with large bootstrap bootstrap sup-
port increases. The use of minBP adjusts for this mul-
tiple comparisons issue with the tradeoff that a larger
region of trees result. Sanderson and Wojciechowski
(2000) illustrate that corrected BP diverges more from
first-order correct bootstrap support as taxon size
increases suggesting the that large sample approxima-
tions require larger samples to be accurate with larger
numbers of taxa. Finally, regardless of the confidence
region procedure, with larger numbers of taxa, even
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perfectly accurate confidence regions for trees can be
expected to be much larger and summary becomes a
difficulty. This suggests increased taxon sampling can
be problematic for inference, although Zwickl and Hillis
(2002) show that taxon sampling can improve esti-
mation. One way of avoiding some of the difficulties
while gaining the benefits for estimation is through the
extraction of trees of groups from confidence regions
for trees of taxa as was illustrated in the EF-1α
example.

An alternative approach to the nonparametric
bootstrap is a parametric bootstrap where the
bootstrapped minBP values are obtained from
bootstrap data sets simulated from the fitted model
with estimated parameters. A possible advantage of
the nonparametric bootstrap is that it should give rea-
sonably accurate approximations to the probabilities
that minBP is larger than a value, if the approximation
of independence across sites is not too rough but the
substitution process is misspecified. The tradeoff is that
if the modeling is correct, the parametric bootstrap
distribution can be expected to give a less variable
approximation to the true distribution of pattern prob-
abilities. Assuming a large enough sample size, the
empirical distribution and parametric bootstrap distri-
bution should be comparable since they both consist-
ently estimate the true distribution and so one expects
comparable answers. From a practical standpoint, the
main reason for not using parametric bootstrapping is
that it requires clear model specification, which is not
required for parsimony and some distance methods.
In addition, some models, like the covarion models of
Galtier (2001) Huelsenbeck (2002), have software
for estimation but not for simulation.

The focus here has been on inference but the tree
with maximum minBP might also be considered as an
alternative estimate of topology. While in every exam-
ple considered here, the tree with maximum minBP
was the estimated tree this need not be the case. In
fact the maximum minBP is interpretable as a majority
rule consensus tree with data-dependent percentage
equal to largest percentage for which a binary tree
can be constructed (c.f. Margush and McMorris,
1981; and Bryant 2003 for a broad discussion of
consensus methods).
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