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Abstract.—Previous work on the star-tree paradox has shown that Bayesian methods suffer from a long branch attraction
bias. That work is extended to settings involving more taxa and partially resolved trees. The long branch attraction bias is
confirmed to arise more broadly and an additional source of bias is found. A by-product of the analysis is methods that
correct for biases toward particular topologies. The corrections can be easily calculated using existing Bayesian software.
Posterior support for a set of two or more trees can thus be supplemented with corrected versions to cross-check or replace
results. Simulations show the corrections to be highly effective. [Bayesian methods; bias; long branch attraction; posterior
probability; star tree.]

Suzuki et al. (2002) seem to have been the first to note
that posterior probabilities for resolved topologies can
occasionally be very large even when the true tree is a star
tree and sequence lengths are large. The phenomenon
has come to be referred to as the star-tree paradox
and received further support from a number of other
studies (Cummings et al. 2003; Lewis et al. 2005; Yang
and Rannala 2006). Kolaczowski and Thornton (2006)
raised questions about the star-tree paradox but the
work of Steel and Matsen (2007) as well as Yang (2007)
conclusively demonstrated that the star-tree paradox
was a real phenomenon.

Susko (2008) considered star-tree paradox results in
the four-taxon setting. One of the findings was that, not
only are large posterior probabilities possible when the
true tree is a star tree, but when that tree has two long
edges and two short edges, there is a substantial chance
of very large posterior probability for the tree with
long edges together. Since behavior of Bayesian methods
varies continuously with parameters, an implication is
that when the true tree has long edges apart but a
small middle edge, large posterior probability for the
incorrect tree with long edges together is expected.
Kolaczkowski and Thornton (2009) showed that this was
indeed the case and provided further results showing a
long branch attraction (LBA) bias for Bayesian posterior
probabilities.

The phenomenon of LBA found in Susko (2008) and
Kolaczkowski and Thornton (2009) is an example of
an oft-reported bias first noted in Felsenstein (1978). In
most references to LBA, however, some form of model
misspecification is present (Huelsenbeck 1995; Inagaki
et al. 2004; Susko et al. 2004) or methods different from
likelihood and Bayesian methods, like parsimony, are
considered (Felsenstein 1978; Hendy and Penny 1989).
Part of what was surprising in the result coming from the
star-tree paradox is that the bias occurs in the absence of
model misspecification.

The current article extends star-tree paradox and
LBA bias results for Bayesian methods to settings with
more taxa and partially resolved trees. Extensions of

Laplace approximation results of Susko (2008) provide
theoretical reasons for expecting a LBA bias and indicate
additional sources of potential bias. More importantly,
the approximations provide motivation for several
simple corrections and reasons for expecting them to
work well. Simulations confirm that LBA bias is a
substantial problem for Bayesian methods and that the
corrections are effective at reducing or even eliminating
this source of bias.

THEORY AND METHODS

Setting and Assumptions
Bias in topological estimation is defined as a tendency

to estimate a particular type of tree (for instance, one
with long branches together) even when it is not correct.
Bias as considered here is consistent with this definition
but includes additional elements. First, the true tree
is usually only partially resolved: It has at least one
zero-length edge. Multiple topologies then include the
true tree as special cases where some of their edge
lengths are set to zero. For example, every five-taxon
tree includes the five-taxon star tree in Figure 1e as a
special case whereas only the three trees in Figure 1j–l
include the partly resolved tree as a special case. This
is the setting where bias is clearest: Since each tree is
equally correct, it is undesirable to frequently obtain
large posterior probability in favor of any particular one
of these topologies. Since behavior of methods usually
varies continuously with edge lengths, biases toward a
particular tree arising from a partially resolved true tree
imply biases toward that tree when some other well-
resolved true tree, similar to the partially resolved tree,
generates the data. It is a proxy for the real setting of
interest when the tree is poorly resolved. Finally, rather
than focusing attention on estimation alone, bias will be
considered as a difference in the distribution of posterior
probabilities over those topologies that include the true
tree as a special case.
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FIGURE 1. Simulations generate data from four- (Fig. 1a) and five- (Fig. 1e) taxon star trees, the partially resolved tree (Fig. 1i) and the fully
resolved LBA (Fig. 1b), and LBR1 (Fig. 1c) trees. In each case, terminal edges are a mix of long (length b) and short (length a) edges. For the
four-taxon settings there are three possible estimated trees, given in Figure 1b–d. Due to the symmetry in the five-taxon generating star tree, the
three sets of trees in Figure 1f–h are the ones that have distinct posterior probability distributions; S1–S3 are some permutations of 3–5. In the
partially resolved case, in most random generations, only the three trees in Figure 1j–l have appreciable posterior probabilities.

Some notation is required and is chosen to be
consistent to a large degree with Susko (2008). Denote
the possible tree topologies as j=1,2, ..., (ordering is
unimportant). Let lj(t) denote the log likelihood for
topology j and edge length vector t, of length p. For
any topology j that includes the true tree, edges can
be ordered with zero length edge at the end so that a
t∗, independent of j, denotes the edge lengths for the
true tree. For example, for a true four-taxon star tree and
for any of the three possible topologies in Figure 1b–d,
t∗ =[t1∗,...,t4∗,0]T can represent the edge length vector
for the true tree, where ti∗ is the terminal edge length for
i. Let l∗(t∗) be the log likelihood for the true tree. Note
that for any topology j that includes the true tree as a
special case, lj(t∗)= l∗(t∗). For such a topology, let

√
nSjn

be the vector of derivatives of lj(t∗), where n is sequence
length, let nJjn(t) denote the second derivative matrix of
lj(t) and let Jjn = Jjn(t∗).

The Laplace approximations used to motivate the
methods require some assumptions. Site patterns
(character states at a site for all observed taxa) are
assumed to be generated independently on a tree with

non zero terminal edge-lengths, from a Markov model
with non zero frequencies of character states and non
zero rates of exchange. This implies that the probability
of any pattern of character states at a site is non zero
and avoids settings where E[Jjn] is not positive definite;
E[Jjn] is assumed positive definite and has been found
to be so in all settings considered. For any topology
j, the prior, �j, is assumed positive and the prior for
the edge lengths, �j(t), is assumed to be continuous,
positive and have a bounded derivative. This assumption
is satisfied for common priors like the uniform or
exponential. It can likely be relaxed but it is important
that the prior have mass and be well-behaved in a
neighborhood of the true tree parameters. Finally, it is
assumed that the trees and edge lengths are identifiable:
If two trees give the same probabilities of site patterns,
no matter what the site patterns, the two trees must be
equivalent. Such an assumption has been shown to be
valid for conventional continuous-time Markov models
as well as a number of models that allow variation
in rates across sites (Chang 1996; Allman et al. 2008;
2012).
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Laplace Approximations
Approximations that hold as sequence length, n, gets

large are derived in Supplementary Material available on
Dryad at http://dx.doi.org/10.5061/dryad.g180s. The
approximations are used to motivate the methods and to
provide reasons for expecting them to work well beyond
the simulation settings considered. Approximations are
for

�j = (2�)−p/2np/2�j

∫
t≥0

exp[lj(t)−l∗(t∗)] �j(t) dt (1)

The reason �j is of interest is that the factor exp[−l∗(t∗)]
can be taken out of the integral and canceled when taking
the ratio

�j∑
k �k

= �j
∫

t≥0exp[lj(t)] �j(t) dt∑
k �k

∫
t≥0exp[lk(t)] �k(t) dt

(2)

giving that the posterior probability of topology j
is proportional to �j. The main result established in
Supplementary Material. (Data available on Dryad at
http://dx.doi.org/10.5061/dryad.g180s) is that �j ≈0
when j does not include the true tree as a special case.
Otherwise

�j ≈exp[1
2

SjnJ−1
jn Sjn]�j�j(t∗)|Jjn|−1/2uj(Sjn) (3)

When �j(t∗) does not depend on j, as is usually the case,
it cancels in calculating the ratio (2) and can be ignored
in (3). Here |Jjn| denotes the determinant of Jjn. The
transformation uj(s) will be referred to as the boundary
factor, and is calculated as follows. Let Y have a normal
distribution with mean J−1

jn s and covariance matrix J−1
jn

and let Yr denote those elements of Y that correspond
to indices of t∗ that are 0. Then uj(s) is calculated as
P(Yr >0).

The result (3) is a consequence of what is commonly
referred to as a Laplace approximation (Tierney and
Kadane 1986). In contrast to usual applications of Laplace
approximation, however, where approximations are
with respect to estimated parameters, approximations
here are with respect to true parameters. Also, the term
uj(Sjn) is a consequence of some parameters being on the
boundary of the parameter space in the true model; some
edge lengths equal zero. Since parameters are usually in
the interior of the parameter space, the uj(Sjn) term is not
present in usual Laplace approximations.

Bias Corrections
The Laplace approximation (3) is useful in

indicating potential sources of bias and in
suggesting potential corrections. It is established
in Supplementary Material (data available on Dryad
at http://dx.doi.org/10.5061/dryad.g180s) that Sjn is
approximately normal with mean 0 and covariance
matrix Jjn. Standard distributional results then give that

ST
jnJ−1

jn Sjn is approximately chi-squared with p degrees
of freedom. Thus, the distribution of the first factor in
(3) is the same no matter which topology j is considered.
Ignoring �j(t) and �j, which need not depend on j, the
main potential sources of bias are |Jjn|−1/2 and uj(Sjn) as
these are the terms that may vary over j.

The first bias correction, referred to as the prior
correction, uses �j and corrects for the |Jjn|−1/2 term. It
would be ideal if one could set �j ∝|Jjn|1/2 which would
cancel the |Jjn|−1/2 term in (3). However, since Jjn = Jjn(t∗)
depends on the unknown true edge lengths, t∗, it must
be replaced with an estimate, �j ∝|Jjn(t̂j)|1/2, where t̂j is a
consistent estimate of edge lengths for topology j; in the
examples, the posterior mean edge lengths were used.

The second correction considered also corrects for the
|Jjn|−1/2 term. Aitkin (1991) defined the posterior Bayes
factor (PBF) as an alternative to usual Bayes factors.
In the context considered here, the ratio of posterior
probabilities for topology j and k are replaced by L̄A

j /L̄A
k

where

L̄A
j =

∫
exp[lj(t)]�(t|D,j) dt (4)

and �(t|D,j) is the posterior distribution of edge lengths
t given topology j and all of the data D. The “corrected
posterior” for topology j that gives this Bayes factor is
proportional to L̄A

j and will be referred to as the PBF
correction or PBF-corrected posterior. Note that (4) is similar
to the numerator for the usual posterior probability but,
since �j(t) is replaced by �(t|D,j), weights more heavily
those edge lengths that are supported by the data.

Two approaches are given for calculating the PBF-
corrected posteriors. The first assumes the software
in use outputs likelihoods and trees encountered
during Markov chain Monte Carlo sampling; MrBayes
(Huelsenbeck and Ronquist 2001; Ronquist and
Huelsenbeck 2003) provides such output. When this is
the case, the average exp[lj(t)], averaged over Markov
chain Monte Carlo samples that gave topology j,
approximates (4); if topology j never arises, LA

j can be
taken as zero. Since only ratios are ever needed, to avoid
numerical difficulties with small likelihoods, exp[lj(t)]
can be replaced with exp[lj(t)−lmax] in averaging,
where lmax is the maximum log likelihood encountered
during sampling.

Simplification of (4) is required to establish that it
will be effective at eliminating the bias due to |Jjn|−1/2

and gives an alternative method for calculating PBF-
corrected posteriors. Substituting

�(t|D,j)=exp[lj(t)]�j(t)/
∫

exp[lj(t)]�j(t) dt
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in (4) gives

L̄A
j =

∫
exp[2lj(t)]�j(t) dt/

∫
exp[lj(t)]�j(t) dt=2−p/2exp[l∗(t∗)]

× (2�)−p/2(2n)p/2�j
∫

exp[2lj(t)−2l∗(t)]�j(t) dt

(2�)−p/2np/2�j
∫

exp[lj(t)−l∗(t)]�j(t) dt
∝

�
(2)
j

�j

where �
(2)
j denotes the �j in (1) corresponding to

concatenating the data set with itself to create a new
data set of size 2n. Since the posterior probabilities for
the original and doubled data are proportional to �j

and �
(2)
j , the PBF-corrected posterior is proportional to

the ratio of the posterior probability for the doubled
data to the posterior probability for the original data.
This fact provides motivation for the PBF correction.
If the data strongly support a topology j, that support
should increase when the data set is concatenated with
itself, leading to a large ratio of posterior probabilities.
That the PBF-corrected posterior is proportional to the
ratio of the posterior probability for the doubled data
to the posterior probability for the original data also
provides a simple, albeit intensive, way of calculating
the PBF corrected posterior. Any Bayesian software
implementation should provide posterior probabilities
for the topologies and concatenating a data set with itself
is straightforward, hence the PBF-corrected posteriors
can be calculated by calculating posterior probabilities
for doubled and original data, taking ratios and then
normalizing.

Using PBF-corrected posteriors effectively eliminates
the bias due to |Jjn|−1/2. To see this note that the Laplace

approximation (3) applies for �
(2)
j with

√
2nS(2)

jn and

2nJ(2)
jn , denoting the first and second derivatives of the log

likelihood, 2lj(t∗), for the doubled data. Thus
√

2nS(2)
jn /2

and 2nJ(2)
jn /2 are the first and second derivatives of lj(t∗),

which were denoted
√

nSjn and nJjn. This gives that S(2)
jn =

√
2Sjn and J(2)

jn = Jjn. Substituting in (3) and taking ratios
gives that the PBF-corrected posterior is proportional to

�
(2)
j /�j ≈

exp[ST
jnJ−1

jn Sjn]�j�j(t∗)|Jjn|−1/2uj(
√

2Sjn)

exp[ 1
2 ST

jnJ−1
jn Sjn]�j�j(t∗)|Jjn|−1/2uj(Sjn)

= exp[1
2

ST
jnJ−1

jn Sjn]uj(
√

2Sjn)

uj(Sjn)
(5)

which no longer involves |Jjn|−1/2. Note that PBF
correction also partially corrects the boundary factor,
since uj(

√
2Sjn) should correlate well with uj(Sjn), giving

a ratio that is closer to constant than uj(Sjn) is.

The final correction adjusts the prior correction for the
boundary factor, uj(Sjn). Correcting for the boundary
factor is unnecessary when there is a single zero-
length edge in the true tree. It follows similarly as in
Susko (2008) that uj(Sjn) has an approximate uniform
distribution, irrespective of the topology j. When there
is more than one zero-length edge in the true tree,
correction is necessary and difficult due to the complex
dependence of uj(Sjn) on Sjn, a random quantity. Since
Sjn is approximately normal with mean 0, uj(0) is a
reasonable guess for what uj(Sjn) is without knowing Sjn.
Thus the third correction considered, referred to as the
boundary correction, uses �j ∝|Jjn(t̂j)|1/2ûj(0)−1. Here ûj(0)
is an estimate of uj(0). In calculating ûj(0) in examples, Jjn

was replaced by Jjn(t̂j) and the boundary set r was taken
as all internal edges.

Direct use of the corrections provides new corrected
“posteriors” or measures of support for the topologies.
These can be converted to measures of support for a
split by summing over all topologies that have the split
present.

Simulation Settings and Bayesian Implementation
Simulations were for a range of four- and five-taxon

settings. Attention is focused on four- and five-taxon
settings partly to insure that results are not due to
convergence difficulties of Markov chain Monte Carlo
methods. For each parameter setting, 1000 data sets were
generated using Seq-Gen (Rambaut and Grassley 1997),
each having 1000 sites from the Jukes–Cantor model
(Jukes and Cantor 1969).

Generating trees are given in Figure 1. In the four-
taxon settings to investigate bias and its correction, the
generating tree was a star tree (Fig. 1a) having two long
edges of length b and two short edges of length a. To
illustrate the implications of bias for resolved trees, data
were also generated from the LBA (Fig. 1b) and LBR1
(Fig. 1c) trees, with long edges separated, again with
short edges of length a and long edges of length b.
However, the middle edge length was allowed to vary
away from 0. The LBA and LBR prefixes are intended
as evocative of long branch attraction and long branch
repulsion trees, respectively.

In five-taxon settings, to investigate biases and their
correction, generation was considered from a star tree
(Fig. 1e) with two long edges of length b and three short
edges a. Generation from a partially resolved tree (Fig. 1i)
was also considered. In this case, the resolved internal
edge, leading to a cherry with two short edges, was set
to the same value, a, as all of the other short edges. For
this generating tree, there is a relatively small chance
that trees without the resolved edge will be estimated.
Although such cases are summarized, primary interest
is in the distribution of posterior support for the LBA
(Fig. 1j), LBR1, (Fig. 1k) and LBR2 (Fig. 1l) trees.

For simulations from a five-taxon star tree, there are
fifteen possible trees that will be estimated. However,
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because of the symmetry present in the generating trees,
some of the estimated trees are sure to have identical
distributions of posterior probabilities. For instance, if
Tree 1 is the LBA tree (Fig. 1f) with S1–S3 set to 3–
5 and Tree 2, the LBA tree with S1–S3 set to 4,3, and
5, then, for any P, the long-run frequency with which
the posterior probability for Tree 1 is larger than P is
exactly the same as the corresponding frequency for
Tree 2. The sets of trees giving the same distributions
of posterior probabilities are indicated in Figure 1f–h,
where S1–S3 are any rearrangement of taxa 3,4, and 5.
There are three LBA trees, corresponding to the ways of
choosing the S2 and S3 taxa. There are six LBR1 trees and
the remaining six trees are LBR2 trees. Consequently,
results are more concisely presented as means over
those trees having the same distributions of posterior
probabilities; for instance, the mean frequency that a
posterior probability was larger than a fixed threshold.
Similarly, a number of splits have the same distributions
of posterior probabilities. The split of taxa 1 and 2 from
the others, 12|345, is labeled the LL split because it has
two long edges together and has a different distribution
of posterior probabilities than any other split. However,
the distribution of posterior probabilities for any two
splits with two short edges together (eg., 34|125 or
35|124) will be the same. Such splits are labeled SS splits.
Finally, splits with a short and a long edge together (an
LS split) will yield the same distributions of posterior
probabilities.

MrBayes 3.1.2 (Huelsenbeck and Ronquist 2001;
Ronquist and Huelsenbeck 2003) was used to obtain
posterior probabilities. That the Jukes–Cantor model is
the correct substitution model was treated as known
in the prior (nst=1, statfreqpr=fixed(equal)).
A total of 100,000 MCMC generations were run
with a sampling frequency of 10 and 25 burn-
in samples (ngen=100000, samplefreq=10,
sumt burnin=25). All other parameters were set
to default values.

RESULTS

Four-Taxon Simulation Results
Figure 2 gives the frequencies with which posterior

probabilities exceeded a threshold for a number of the
four-taxon settings and indicates that a substantial LBA
bias occurs with Bayesian methods that is reduced to
varying degree by the corrections introduced here. The
uncorrected cases in the first row show a substantial bias
in favor of the LBA tree when the short edge lengths are
a=0.05. When sequence length is 1000, there is roughly
a 40% chance that the posterior probability for the LBA
tree will be larger than 0.8 and this event occurs only
slightly less frequently when sequence length is as large
as 25,000. Bias is present but not as substantial when
short edges a=0.5 are only half as long as the long
edges. There is <20% chance of a posterior probability
>0.8. The prior correction corrects the bias effectively
when sequence length is 25,000. When sequence length

is 1000, however, while the bias decreases substantially,
an LBA bias remains and is particularly prominent when
a=0.05. The PBF correction is very effective in all cases
with a slight overcorrection, whereby the LBA tree is
more likely to have small posterior probabilities.

The LBA bias of Bayesian posterior probabilities
depends substantially on the ratio of short and long
edge lengths as is illustrated in Figure 3. Across settings,
there is a 60–80% chance the LBA tree will be estimated
when the short edge length, a, is 10% of the long edge
length, b, but the LBA tree is only estimated ∼40% of the
time when a/b=0.5. The LBA bias also depends on how
long the long edge is. When b=0.5 and n=1000, there
is roughly a 60% chance of estimating the LBA tree with
an edge length that is 10% of b. This probability goes
up to 80% when b=1. The prior and PBF corrections do
well at reducing the frequency with which the LBA tree
is estimated. For short edges that are more than 10% of
the long edge lengths, LBA trees arise <50% of the time.
The prior correction tends to undercorrect and the PBF
correction tends to overcorrect, however, with the biases
in correction being worst when sequence lengths are
smaller (n=1000) and when the short edge is a smaller
fraction of the long edge.

The LBA bias when some edges of a tree are unresolved
implies biases will arise as the edge lengths that are
zero in the incompletely resolved tree are increased.
Figure 4 shows a tendency to estimate the LBA tree
even when the true generating tree is the LBR1 tree of
Figure 1. With a sequence length of 1000, the LBA tree is
much more likely to be estimated when the middle edge
length in the true tree is small and is still more likely
to be estimated than the true tree when middle edge
length is as large as 0.02. With larger sequence lengths
of 25,000, there is still a tendency to estimate the LBA
tree with small middle edge lengths but the frequency
with which the true tree is estimated increases quickly,
with a >80% chance that the true tree is estimated when
its middle edge length is 0.025. With sequence length
of n=1000, the prior correction gives a <60% chance of
the LBA tree being estimated. Still, the tendency for the
prior correction to under-correct the LBA bias causes
it to have a relatively small probability of estimating
the correct tree; <60%, even with middle edge lengths
as large as 0.025. With n=25,000, the prior correction
is very effective. The true tree is always more likely
to be estimated than the LBA tree but not much more
likely when middle edge length approaches zero. The
PBF correction does an effective job of correcting across
settings although its tendency to overcorrect causes it to
have a larger than desired frequency of estimating the
LBR1 tree (40%) when the middle edge length is zero,
n=1000 and a=0.05.

Although the LBA bias of uncorrected posterior
probabilities is generally undesirable, if the true tree
actually is the LBA tree, as in Figure 5, correcting the
bias toward it can lead to poorer performance. With b=1
and a=0.05, the LBA tree is estimated >80% of the time
when the middle edge length is zero and the frequency of
estimation increases as the middle edge length increases.
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FIGURE 2. The frequencies with which posterior probabilities exceeded a threshold P in simulations from a four-taxon star tree with long
edge length b=1. Here n is the sequence length and short edges are of length a. The y-axis value for any panel gives the frequency with which
the posterior for the given topology exceeded the x-axis value.

For the prior and PBF corrections, the frequency with
which the correct LBA tree is estimated is smaller but
increases as the middle edge length increases. With a
sequence length of 25,000, except for middle edge lengths
<0.005, the LBA tree is more likely to be estimated.
With n=1000, because the prior correction was an
undercorrection it always estimates the correct LBA tree
more frequently. The consequence of PBF overcorrection,
however, is that the frequency of correct LBA estimation
remains low (<40%) even with middle edge lengths of
0.025.

Five-Taxon Simulation Results
The LBA bias with four taxa is suggestive of a more

general phenomenon that occurs when there is a mix of
long and short edges in a tree. This is confirmed in the

five-taxon results reported in Figure 6. The frequency
with which posterior probabilities exceed a threshold
for the LBA tree is comparable to but less than the
same frequency when data are generated from the four-
taxon tree with the same lengths of short and long
edges (Figure 2). This may be due to lengthening the
total distance from the split of primary interest to some
terminal nodes via the additional well-resolved internal
edge of length a in Figure 1i. Figure 6 gives results only
for the three trees in Figure 1j–l. These were the only
trees that arose with appreciable posterior probability;
with n=1000 and a=0.05 there were 100 cases where
the sum of posterior probabilities for all other trees was
larger than 0.1, with a=0.5 there was one case and for
all other settings there were no such cases. Once again,
with n=1000, the prior correction undercorrects the LBA
bias substantially when n=1000 and the PBF correction
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FIGURE 3. The frequencies with which topologies are estimated as a function of the ratio of short to long edge lengths in simulations from a
four-taxon star tree with long edge lengths b=0.5 or 1.

overcorrects slightly. Both corrections are effective with
the larger sequence length.

In examples considered so far, a single unresolved
edge is present in the true tree. In that case the boundary
factor, uj(Sjn), in the Laplace approximation (3) has the
same distribution for each topology j and does not
induce a bias. When there is more than one unresolved
edge, the boundary factor can have a substantial
impact. In the case that two edge lengths are zero, the
approximate distribution of uj(Sjn), treating Jjn as fixed
and equal to E[Jjn] as a further approximation, depends
only upon the corresponding correlation coming from
the covariance matrix E[Jjn]−1. Summary quantities for
these distributions are given in Table 1. In brief, smaller
boundary factors are expected when the correlation is
highly negative and they are expected to be less variable.
Table 2 gives the correlations that are expected from
the J−1

jn matrix with large sequence lengths for the three

types of trees that arise when data are generated from
the five-taxon star tree of Figure 1e; they were calculated
from E[Jjn]−1. The correlations for the LBR2 trees are
much less than for the LBA tree which are comparable
but smaller than the correlations for the LBR1 tree. Thus
for the LBR2 trees, which have the smallest correlations,
small boundary factors are expected in (3) leading to
smaller posterior probabilities. This is confirmed in
Figure 7 which gives the mean frequencies with which
the three types of trees were estimated. The LBA bias is
still predominant in the uncorrected case but the LBR2
trees are much less likely to be estimated than LBR1
trees. That this is due to the truncation factor is evident
by contrasting the effects of the prior and boundary
corrections when n=25,000. The prior correction is
effective at eliminating the LBA bias but the frequency
of LBR2 estimation is still low. The boundary correction,
which simply adds a factor to the prior correction, is
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FIGURE 4. The frequencies with which topologies are estimated as a function of middle edge length in simulations from the four-taxon LBR1
tree of Figure 1c with long edge length b=1.

effective at making each type of tree equally likely. The
PBF correction is much less affected by the boundary
factor.

Biases of posterior probabilities for topologies imply
biases for splits. In the uncorrected case in Figure 8,
it is much more likely that the posterior probability
of the split with the long edges together will exceed
any given threshold than the other posterior probability
of the other types of splits. The performance of PBF
and prior corrections is similar as in all other examples
considered. Although both corrections are effective at
reducing bias, the prior correction undercorrects and the
PBF correction is a slight overcorrection.

DISCUSSION

The simulations illustrated a clear LBA bias for
Bayesian methods, even in the absence of model

misspecification. Extension to five-taxon cases illustrate
that other biases (effectively caused by the boundary
factor) can cause one tree to be favored over another
without having long branches together. There is an
intuitive explanation for the LBA bias. The posterior
for topology j is proportional to

∫
exp[lj(t)]�j(t) dt.

Assuming, as is usually the case, that �j(t) is not highly
concentrated, the effective region of integration for the
numerator term is those sets of edge lengths where
the likelihood is relatively large. For each topology,
it is reasonable to expect that the effective regions
of integration for the terminal edge lengths will be
comparable. If data is generated from, for instance, the
four-taxon star tree in Figure 1a, it is the effective region
of integration for the middle edge lengths that will differ.
With small a edge lengths, there will be substantial signal
in the data that the taxa 3 and 4 are closely related
and lj(t) will only be relatively large when the edge
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FIGURE 5. The frequencies with which topologies are estimated as a function of middle edge length in simulations from the four-taxon LBA
tree of Figure 1b with long edge length b=1.

lengths are consistent with this. For the LBR1 and LBR2
trees, the only way to accomplish this is to have a small
middle edge. The effective region of integration for the
middle edge is thus small. For the LBA tree, however,
the distance between taxa 3 and 4 depends only on their
terminal edge lengths. Thus, there will be a much larger
set of middle edge lengths for which lj(t) is relatively
large. The effective region of integration for the middle
edge is relatively large and the numerator for the LBA
topology can be expected to be larger than for the other
two.

The intuitive explanation for the LBA bias can be
related to the |Jjn|−1/2 factor of (3) and maximum
likelihood estimation. The implication of the argument
above is that there is more uncertainty about the middle
edge length when data are fitted to the LBA tree than to
the LBR trees. Thus, the variances of the estimated ML
middle edge lengths are larger for the LBA tree than the

LBR with variances for the other edge lengths being more
comparable. The matrix J−1

jn is a valid approximation
to the covariance matrix of the ML edge lengths under
topology j and |Jjn|−1/2 =|J−1

jn |1/2 will be relatively large
when some of the entries of J−1

jn are relatively large,
which is exactly what is expected for the LBA tree. More
generally, topologies that give large variances to some
subset of internal edges are likely to have relatively
large |Jjn|−1/2 and there will be a bias toward them.
Since there is stronger signal for shorter distances than
longer distances, topologies that group together similar
sequences will have more highly variable internal edge
lengths leading to the more dissimilar sequences. Their
effective regions of integration will consequently be
larger.

The goal here has been to reduce bias toward any
particular tree among well-resolved trees. Examining
performance when data are generated from a partially
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FIGURE 6. The frequencies with which posterior probabilities exceeded a threshold P in simulations from the partially resolved five-taxon
tree of Figure 1i with long edge length b=1.

TABLE 1. The mean, median, and standard deviation (SD) of
the large sample distributions of boundary correction terms when the
correlation between the normal components is �.

� Mean Median SD

−0.95 0.05 0.03 0.055−0.50 0.17 0.11 0.164
0.00 0.25 0.19 0.221
0.50 0.33 0.28 0.255
0.95 0.45 0.43 0.286

resolved tree has been used as a device to define
bias. Partially resolved trees are topologies with some
subset of internal edge lengths set to zero and such
edge lengths are not considered a priori much more
or less likely than most other sets of internal edge
lengths; the edge length prior �j(t) allows them to
be somewhat more or less likely but not so much so

TABLE 2. The correlations that are expected from the J−1
jn matrix

when data are generated from the five-taxon star tree in Figure 1 with
b=1.

Tree a=0.05 a=0.5

LBA −0.059 −0.159
LBR1 −0.005 −0.124
LBR2 −0.624 −0.561

that they have positive prior probability as opposed
to prior density. Including partially resolved trees as
topologies in their own right has been put forward as
a solution to the star-tree paradox (Yang 2007) and it is
tempting to consider it as an alternative solution to the
difficulties noted here. Including partially resolved trees
will make it less likely that LBA trees will be estimated
but only because partially resolved trees will then have
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FIGURE 7. The mean frequencies with which topologies are estimated as a function of short edge lengths in simulations from a five-taxon
star tree with long edge length b=1.

nonnegligible posterior probability. The relative support
for LBA trees, among well-resolved trees, will remain
the same. The results here imply that it is more likely
that either a LBA tree or a partially resolved tree will
be estimated than the true tree when the true tree is
an alternative well-resolved tree but with short internal
edges. Moreover, there is reason to believe partially
resolved trees will be estimated too frequently when the
true tree is well resolved. In simple statistical settings
involving model comparison, Lindley’s paradox (Bartlett
1957; Lindley 1957) refers to the result that, irrespective
of the data, relative support for a simple model to
a complex model can become arbitrarily large as the
variance of noninformative priors for parameters grows.
The analogy here is that support for partially resolved
trees (analogues of simple models) relative to well-
resolved trees becomes arbitrarily large as the variance
of edge length priors grows. Thus, implementations that

included partially resolved trees as separate topologies
would need to exercise greater caution in the choice of
edge length priors to avoid large artefactual support for
partially resolved trees.

As expected from theory, both the PBF correction
and prior correction are effective with large sequence
lengths. With smaller sequence lengths, however, the
PBF correction was more effective than the prior
correction with a slight tendency to overcorrect. By
contrast, prior correction with smaller sequence lengths
exhibited similar albeit less substantial biases to the
uncorrected case. For both types of correction, it is
unclear at present why there is a systematic tendency
for correction in a particular direction.

The boundary correction was included partly to
illustrate that the boundary factor of (3) is indeed a
source of bias and can, in theory, be corrected. In addition
to the increased complexity of calculation, practical
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FIGURE 8. The mean frequencies with which posterior probabilities for splits exceeded a threshold P in simulations from a five-taxon star
tree with long edge length b=1.

difficulties include that the indices of the edge lengths
in t∗ that are zero are not known. Potential strategies
for adjusting for this include setting edge lengths below
a certain threshold to zero or setting internal edge
lengths to zero so that a set of well-supported trees are
equivalent. In any case, the boundary factor bias did
not seem as serious as the |Jjn|−1/2 bias and the PBF
correction makes some degree of automatic adjustment
for it.

Two methods have been given for calculating
PBF corrections. When allowed by the Bayesian
implementation, the method that averages likelihoods
is to be preferred to the method using data-doubling.
First, data-doubling requires double the computation.
In addition, when a topology is poorly supported, its
posterior will be small for both the original and doubled
data. Thus, �

(2)
j /�j can be reasonably estimated for well-

supported topologies but the ratio will be unstable

for poorly supported topologies. In the event that
data-doubling is the only available option, topologies
with very small �j should likely be discarded from
consideration at the outset. Software that implements
most of the methods is available at

http://www.mathstat.dal.ca/˜tsusko

The PBF correction can be viewed as replacing �j with

�
(2)
j /�j in the posterior �j/

∑
k �k . More generally, for f >0,

let

�
(f )
j = (2�)−p/2(fn)p/2�j

∫
exp{f [lj(t)−l∗(t∗)]}�j(t) dt

Then a similar argument as the one that gave (5) gives
that

�
(f )
j /�j ≈exp[(f −1)ST

jnJ−1
jn Sjn/2]uj(

√
f Sjn)/uj(Sjn)
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Thus, replacing �j with �
(f )
j /�j when f >1 or �j/�

(f )
j when

0< f <1 should similarly be effective at reducing bias.
Optimal choice of f is a topic of current research. In the

context of model selection, replacement of �j by �j/�
(f )
j

when 0< f <1 gives rise to the fractional Bayes factor of
O’Hagan (1995).

None of the corrections completely follows the
Bayesian paradigm. The prior correction comes closest.
The prior �j ∝|Jjn(t̂j)|1/2 is not a valid prior because
it depends on data. However, as sequence length
gets large, |Jjn(t̂j)|1/2 ≈|E[Jjn(t∗)]|1/2 which is a valid
data-independent prior. Thus, the prior correction is
asymptotically Bayesian. Closely connected to the prior
correction is the Jeffreys prior (Jeffreys 1945), which
could, in theory, provide an alternative correction. The
Jeffreys prior for edge lengths is �j(t)∝|E[Jjn(t)]|1/2.
If it were used as an edge length prior, it can be
seen from (3) that, since |Jjn|1/2 ≈|E[Jjn(t∗)]|1/2 ∝�j(t∗),
�j(t∗) cancels the |Jjn|−1/2 term. While the Jeffreys
prior could, in principle, be included in Markov chain
Monte Carlo implementations, repeated calculation of
|E[Jjn(t)]| makes it prohibitive and there are potential
difficulties due to it being a potentially improper
prior. The PBF corrected posteriors are not Bayesian
even asymptotically. For the pragmatic, however, such
concerns are less important than that the corrections
are effective at eliminating an important source of
bias.
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