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Abstract A hybrid asymptotic–numerical method is formulated and implemented to
accurately calculate the mean first passage time (MFPT) for the expected time needed
for a predator to locate small patches of prey in a 2-D landscape. In our analysis, the
movement of the predator can have both a random and a directed component, where
the diffusivity of the predator is isotropic but possibly spatially heterogeneous. Our
singular perturbation methodology, which is based on the assumption that the ratio ε of
the radius of a typical prey patch to that of the overall landscape is asymptotically small,
leads to the derivation of an algebraic system that determines the MFPT in terms of
parameters characterizing the shapes of the small prey patches together with a certain
Green’s function, which in general must be computed numerically. The expected error
in approximating the MFPT by our semi-analytical procedure is smaller than any power
of −1/ log ε, so that our approximation of the MFPT is still rather accurate at only
moderately small prey patch radii. Overall, our hybrid approach has the advantage
of eliminating the difficulty with resolving small spatial scales in a full numerical
treatment of the partial differential equation (PDE). Similar semi-analytical methods
are also developed and implemented to accurately calculate related quantities such
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as the variance of the mean first passage time (VMFPT) and the splitting probability.
Results for the MFPT, the VMFPT, and splitting probability obtained from our hybrid
methodology are validated with corresponding results computed from full numerical
simulations of the underlying PDEs.

Keywords Mean first passage time · Centralizing tendency · Neumann Green’s
function · Matched asymptotic expansions · Splitting probability

Mathematics Subject Classification 35B25 · 35J25 · 92D40

1 Introduction

Geography and movement are very important factors in determining the population
dynamics of predator–prey systems in ecology (Kareiva et al. 1990; Turchin 1991;
Lima and Zollner 1996). For example, the distribution of predator dens across the
landscape affects prey survival, while localized prey foraging sites can impact the
success of predators. Similarly, predators hunting for prey experience physical limi-
tations on movement imposed by the landscape (e.g., thick brush versus open forest)
that may lead to restrictions on their rate of finding food. As a specific example, the
distribution of wolves in forested regions is known to be influenced by topography,
competing species, and the density of prey (Moorcroft and Lewis 2006; McKenzie
et al. 2012). Additionally, human alterations to the landscape (and in particular, the
introduction of linear features such as roads and seismic surveying lines) have all been
implicated in altering the motion of both wolves and their prey species (caribou and
elk) across the landscape (James 1999; James and Stuart-Smith 2000; Whittington and
St Clair 2004, 2005; Frair et al. 2005; McKenzie et al. 2012). Since time elapsed and
distance covered before successful hunting are factors that determine the fitness and
survival of a predator, it is important to understand how the locations and movement
of both predator and prey can affect reproductive fitness and probability of survival.
This is particularly important when considering the potential effects of human effects
of human alterations to the landscape, such as vegetation changes, road building, and
power line cuts.

In this paper, we will present hybrid numerical–analytical results for the first pas-
sage time approach to estimating predator search times under the assumption that
predator movement is well described by random walk models (Brownian motion).
The mean first passage time (MFPT) approach was first used in an ecological context
by McKenzie et al. (2009), but their work was based on preexisting theory for phys-
ical and chemical systems (see, e.g., Gardiner 2009; Redner 2001; Condamin et al.
2007). In the ecological context, the MFPT, T , is the mean time taken for a predator
to reach a specific patch (with prey) for the first time, starting from a given location
in some two-dimensional spatial landscape. Since this time may vary depending on
the start location, we define T (X) as the mean time taken for the predator to reach its
target for the first time, starting from the location X. The target could for instance be
a prey patch, representing a spatial region around the prey, within which the predator
can locate and attack the prey. The approximation of a static prey patch is justified if
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we consider a predator seeking a relatively stationary prey that has a very small home
range. Here, we suppose that the predator will always catch the prey if it enters the prey
patch (this is a ‘hard encounter’ in the language of Gurarie and Ovaskainen (2013)).
For analytical tractability, we will only consider the case where the prey patches are
stationary in time.

The fundamental assumption underlying many first passage time models is that
animal motion can be reasonably well described by a spatial diffusion process. This
assumption can be justified on the macroscopic scale via the central limit theorem and
has been in common use in ecological modeling for a long time (Skellam 1951; Berg
1983; Turchin 1998; Okubo and Levin 1991; Moorcroft and Lewis 2006; McKenzie
et al. 2009, 2012; Gurarie and Ovaskainen 2013). Different diffusion-like models can
be considered. The simplest possible model is pure diffusion, equivalent to molecular
Brownian motion with a diffusivity D. Alternatively, drift-diffusion models incorpo-
rate an underlying directed motion, or drift, and in particular, this can be used to build
a “home range” model of animal movement, where a centralizing directed motion
is imposed toward a fixed den-site for the predator, in addition to a purely diffu-
sive motion (Holgate 1971; Okubo and Levin 1991). Alternatively, spatial variability
in animal motion can be captured through a spatially variable diffusion coefficient
(McKenzie et al. 2012; Cobbold and Lutscher 2014). Generically, all these models
based on diffusion processes lead us to a two-dimensional backward Kolmogorov
equation, an elliptic partial differential equation (PDE) for the MFPT with prescribed
boundary conditions at prey patches and habitat boundaries (Redner 2001; McKenzie
et al. 2009). This equation can be solved analytically for simple spatial domains, but in
many studies, numerical methods have been applied to approximate the solution (Bar-
tumeus et al. 2005; James et al. 2008, 2010; Gurarie and Ovaskainen 2011; McKenzie
et al. 2012).

However, in many other contexts, it has proven possible to establish the MFPT as an
asymptotic series, using singular perturbation theory (e.g., Pillay et al. 2010; Coombs
et al. 2009; Dushek and Coombs 2008 for microscopic cell-scale and physiological
studies that use this approach). The key requirement is that the target region is a
small, localized structure compared with the overall region where the motion occurs.
In the present context, this is the assumed small ratio of a prey patch size to the
whole predator habitat. In this small ratio limit, we will use singular perturbation
techniques to analytically derive an algebraic system that determines the MFPT in
terms of a certain Green’s function, which in general must be computed numerically.
This overall hybrid asymptotic–numerical approach has the benefit of eliminating the
difficulty with resolving small spatial scales in a full numerical treatment of the PDE.
Our semi-analytical approach also gives considerable insight into the dependence of
the MFPT on the system parameters.

Two further concepts related to the MFPT for a diffusing particle in the presence
of trap(s) are the variance of the MFPT (VMFPT) and the splitting probability. For
situations where the first passage time has a significant spread about the mean, it
may be important to estimate the second moment (SMFPT) of the first passage time.
We show how to extend our hybrid asymptotic–numerical method for the MFPT
to asymptotically calculate the SMFPT in the presence of small patches. By using
VMFPT = SMFPT−MFPT2, we are then able to determine the VMFPT. The second
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concept related to the MFPT is that of the splitting probability. The splitting probability
is defined as the probability that a dynamic particle reaches one particular target patch
before reaching any of the other patches, and is well known to satisfy Laplace’s
equation in a domain with small traps (cf. Redner 2001; Schuss 2010). In the context
of ecology, the splitting probability arises in calculating the probability of a predator
reaching a specific prey patch in a landscape consisting of other prey patches. Similar
calculations in two-dimensional domains with small circular patch targets, but with
applications to biophysical modeling, have been performed in Chevalier et al. (2011)
using a pseudo-potential method. However, we show that our hybrid asymptotic–
numerical technique can yield a very high level of accuracy and can be used for both
arbitrarily shaped prey patches and for the case where the target patch is very close
to a neighboring patch. The analysis and applications related to both the VMFPT and
the splitting probability are novel, and results from our asymptotic theory are found to
agree very closely with corresponding results computed from full PDE simulations.

The problems under consideration herein can be referred to as narrow capture
problems, where the time needed for a Brownian particle to reach a small compact
target in a 2-D domain is asymptotically long as the radius of the target tends to zero.
Related biophysical problems involving either searching for small binding sites in
a biological cell or diffusive processes undergoing localized chemical reactions in
small localized regions are formulated and studied in Benichou and Voituriez (2014),
Bressloff et al. (2008), Bressloff and Newby (2013), Chevalier et al. (2011), Condamin
et al. (2007), Isaacson and Newby (2013), Straube et al. (2007), and Taflia and Holcman
(2007). A related class of problems, known as narrow escape problems, where a
Brownian particle can exit a domain only through a small window on its boundary,
has been studied in Singer et al. (2006), Singer and Schuss (2007), Pillay et al. (2010),
Chen and Friedman (2011), and Caginalp and Chen (2012). For a broad survey of such
problems and their applications to biophysical modeling, see Holcman and Schuss
(2014) and Schuss (2012) and the references therein. From a mathematical viewpoint,
narrow capture and escape problems are singular perturbation problems where the
perturbation is strong but localized in space. Strong localized perturbation theory,
which initiates partially from Ward et al. (1993) and Ward and Keller (1993), has been
developed and applied over the past two decades to treat various PDE and eigenvalue
problems in 2-D or 3-D domains containing small defects (cf. Cheviakov and Ward
2011; Coombs et al. 2009; Kolokolnikov et al. 2005; Titcombe and Ward 2000).

Diffusive processes in the presence of a centralizing drift term also arise in the
biophysical modeling of the trafficking of viral particles in the cell cytoplasm (cf.
Amoruso et al. 2011; Lagache et al. 2009; Lagache and Holcman 2008a, b; Tsaneva
et al. 2009). In this 3-D context, the viral particles first cross the cell membrane
and then undergo Brownian motion with intermittent drift along microtubules that
direct the particles toward the target site, being the cell nucleus. The analysis of first
passage time quantities associated with this class of problems is given in Lagache
and Holcman (2008a), Lagache and Holcman (2008b), and Lagache et al. (2009). In
our 2-D ecological context, we also assume a centralizing drift term, but in contrast
to the problems considered in Lagache and Holcman (2008a), Lagache and Holcman
(2008b), and Lagache et al. (2009), we assume that there are N possible small target
sites in an arbitrary 2-D domain.
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The outline of this paper is as follows. In Sect. 2, we develop a hybrid asymptotic–
numerical method to asymptotically calculate the MFPT in a 2-D landscape of small
patches when the assumed isotropic diffusivity is spatially homogeneous. For this
problem, we allow for a possible drift term that models a centralizing tendency of the
predator. In Sect. 3.1, results from the asymptotic theory for the MFPT are compared
with full numerical simulations of the corresponding PDE for a circular landscape.
In our comparisons, we use the parameter values of McKenzie et al. (2009) for the
constant diffusivity, the magnitude of the drift velocity, and typical sizes of both the
landscape and a prey patch. In Sect. 4, we extend our semi-analytical theoretical
framework to calculate the MFPT for the case of an isotropic, but spatially variable
diffusivity. In Sect. 5, we show how to asymptotically calculate the splitting probability
in a landscape of small patches, while in Sect. 6, we asymptotically solve the PDE
characterizing the SMFPT. The asymptotic results in Sects. 4, 5 and 6 are illustrated
for various prey patch configurations and are favorably compared with results obtained
from full numerical simulations of the corresponding PDE’s. Finally, in Sect. 7, we
give a brief discussion of some open problems.

2 The Mean First Passage Time

It is well known that the MFPT, T (X), satisfies the following elliptic PDE in a two-
dimensional domain (cf. Redner 2001):

DΔ′T (X)+ c(X) · ∇′T (X) = −1, (1)

where D is the diffusivity of the underlying Brownian motion and c(X) is the drift
velocity. As similar to the modeling of the trafficking of viral particles in the cell
cytoplasm (cf. Lagache et al. 2009; Tsaneva et al. 2009), (1) can be derived from the
homogenization limit of a diffusive process whereby the predator undergoes both free
diffusion and intermittent directed motion.

In (1), we assume that the drift velocity c is a conservative vector field, and so can be
written as the gradient of some scalar potential. With this assumption, the divergence
structure of (1) is preserved, and the analysis of (1) is considerably more tractable than
for the case of arbitrary drift. For our problem, where the predator has a centralizing
tendency, the drift c is a conservative field directed toward the origin (see Sect. 3.1
below for our choice of c).

The system (1) is made dimensionless by introducing the new variables u, x, and
ψ(x) as u = D

L2 T , x = L−1X, and ∇ψ = c(X) L
D . The primed derivatives are

defined with respect to X while the un-primed ones are defined with respect to the
non-dimensional variable x. Here, 2L is the characteristic diameter of the domain
under consideration. In particular, for a circular landscape, L is the radius of the
landscape. The non-dimensional PDE problem for the MFPT, assuming the presence
of N localized prey patches, is formulated as
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Fig. 1 Schematic plot of the
landscape Ω with five small
prey patches

Δu(x)+ ∇ψ(x) · ∇u(x) = −1, x ∈ Ω \ ∪N
j=1Ω

ε
j ; ∂u

∂n
= 0, x ∈ ∂Ω,

u = 0, x ∈ ∂Ωε
j , j = 1 . . . , N . (2)

The non-dimensional MFPT satisfies the PDE (2) in the landscape Ω , which is
perforated by N prey patches of small area denoted byΩε

1 , . . . ,Ω
ε
N (see Fig. 1). The

MFPT vanishes on the boundary of each patch and satisfies a reflecting boundary
condition on the domain boundary. We assume that the domain Ω has diameter O(1)
while the non-dimensional radius of each patch is O(ε), where ε � 1. As ε → 0, we
assume that Ωε

j → x j , so that each patch shrinks to a point in Ω as ε → 0. We also
assume that the distance between any two patches is O(1) as ε → 0. In our analysis
below, the landscape Ω is an arbitrary bounded domain. However, as was done in
McKenzie et al. (2009), in Sect. 3, we illustrate our asymptotic results only for the
case of a circular landscape where the predator has a centralizing tendency toward the
origin.

2.1 Asymptotic Solution for the MFPT with Drift

In this section, we consider (2) for the MFPT allowing for the presence of drift. This
problem is solved asymptotically by the method of matched asymptotic expansions
(cf. Kevorkian and Cole 1996). Related problems involving elliptic PDEs in perforated
2-D domains with no drift have been studied in Chevalier et al. (2011), Coombs et al.
(2009), Straube et al. (2007), Kolokolnikov et al. (2005), Ward et al. (1993), Pillay et
al. (2010), and Titcombe and Ward (2000).

Following Titcombe and Ward (2000), the outer expansion away from the prey
patches is taken to have the form

u ∼ U0(x, ν)+ σ(ε)U1(x, ν)+ · · · . (3)

Here, ν ≡ (ν1, . . . , νN ) is defined in terms of the logarithmic gauge functions ν j ≡
−1/ log(εd j ) for j = 1, . . . , N . As shown below, the constant d j is obtained from a
certain canonical inner problem defined near the j th patch. In the outer expansion, the
correction term σ(ε) is assumed to satisfy σ(ε) � νk

j for each j = 1, . . . , N and for
any positive power k, so that the correction term induced by U1 is beyond-all-orders
with respect to all of the logarithmic terms captured by U0. Upon substituting (3) into
(2), we obtain that U0 satisfies
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Table 1 The logarithmic
capacitance d j for some
cross-sectional shapes of
Ω j ≡ ε−1Ωεj

Shape of Ω j ≡ ε−1Ωεj Logarithmic capacitance d j

Circle, radius a d j = a

Ellipse, semi-axes a, b d j = a+b
2

Equilateral triangle, side length h d j =
√

3Γ
(

1
3

)3
h

8π2 ≈ 0.422h

Isosceles right triangle, short side h d j = 33/4Γ
(

1
4

)2
h

27/2π3/2 ≈ 0.476h

Square, side length h d j = Γ
(

1
4

)2
h

4π3/2 ≈ 0.5902h

ΔU0 + ∇ψ · ∇U0 = −1, x ∈ Ω \ {x1, . . . , xN } ; ∂U0

∂n
= 0, x ∈ ∂Ω. (4)

Since the patches shrink to the points x j ∈ Ω as ε → 0 for j = 1, . . . , N , this
outer problem for U0 must be supplemented by appropriate singularity conditions as
x → x j , for each j = 1, . . . , N . These singularity conditions are derived below by
matching the outer expansion to an inner expansion that is constructed near each of
the N patches.

For the inner problem near the j th patch, we define an inner variable y =
ε−1

(
x − x j

)
and the corresponding magnified patch Ω j by Ω j = ε−1Ωε

j . Near the
j th patch, we introduce the inner solution q j by q j (y) = u(x j + εy), and we pose the
inner expansion

q j ∼ ν jγ j (ν)q0 j (y)+ α(ε, ν)q1 j (y)+ · · · . (5)

Here, γ j is an unknown constant to be determined. The gauge function α is assumed to
be beyond-all-orders with respect to the logarithmic terms and so satisfies α � νk

j for
any positive integer k as ε → 0. We impose that q0 j grows logarithmically at infinity,
and from the original PDE (2) for the MFPT, we obtain that q0 j satisfies

Δyq0 j = 0, y /∈ Ω j ; q0 j = 0, y ∈ ∂Ω j ,

q0 j ∼ log |y| − log d j + O(|y|−1), as |y| → ∞. (6)

We remark that the behavior q0 j ∼ log |y| as |y| → ∞ is sufficient to determine
the solution for q0 j uniquely. In terms of this solution, the O(1) term in the far-field
behavior is uniquely determined. The O(|y|−1) unspecified term is the dipole term in
the far-field behavior. The constant d j is known as the logarithmic capacitance (cf.
Ransford 1995) of Ω j , and it depends on the shape of Ω j but not on its orientation.
Numerical values for d j for different shapes of Ω j are given in Ransford (1995),
and some of these are given in Table 1. A boundary integral method to numerically
compute d j for an arbitrarily shaped domain Ω j is described and implemented in
Dijkstra and Hochstenbach (2008).

Upon substituting the far-field behavior of q0 j as |y| → ∞ into (5), and rewriting
the result in terms of the outer variable, we obtain from the matching condition that
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the outer solution U0 must have the following singularity structure:

U0(x, ν) ∼ ν jγ j log |x − x j | + γ j , as x → x j , j = 1, . . . , N . (7)

For each j = 1, . . . , N , (7) specifies both the regular and singular part of the outer
solution. As such, for each j = 1, . . . , N , we have one constraint for the determination
of the γ j for j = 1, . . . , N . Overall, these constraints will lead to a linear algebraic
system for the unknown γ j for j = 1, . . . , N .

The outer problem (4) for U0 can be defined in Ω by introducing singular Dirac
delta function forces and by rewriting the system in divergence form by introducing
P(x) by P = eψ . In this way, (4) can be rewritten as

∇ · (P∇U0) = −P + 2π P
N∑

k=1

νkγkδ(x − xk), x ∈ Ω ; ∂U

∂n
= 0, x ∈ ∂Ω, (8)

where U0 must satisfy the singularity behavior (7). By applying the divergence theorem
to (8), we must have that

2π
N∑

k=1

P(xk)νkγk =
∫

Ω

P(x) dx. (9)

Next, we decompose U0 in terms of a smooth function U0H (x) and a sum of Green’s
functions in the form

U0 = U0H + 2π
N∑

k=1

νkγk G(x; xk)+ χ. (10)

Here, χ is an arbitrary constant, and the smooth part UO H is taken to satisfy

∇ · (P∇U0H ) = −P + Pave, x ∈ Ω ; ∂U0H

∂n
= 0, x ∈ ∂Ω ;

∫

Ω

U0H dx = 0.

(11)
Here, Pave is the average of P over Ω , defined explicitly by

Pave ≡ 1

|Ω|
∫

Ω

P(x) dx. (12)

where |Ω| is the area of Ω . The zero average condition on U0H in (11) ensures that
U0H is uniquely determined.

In (10), the Green’s function G(x; ξ) is the unique solution to
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∇ · (P∇G(x; ξ )) = − P(ξ)

|Ω| + P(x)δ(x − ξ), x ∈ Ω ; ∂G

∂n
= 0, x ∈ ∂Ω,

G ∼ 1

2π
(log |x − ξ | + R(ξ))+ o(1) as x → ξ ;

∫

Ω

G(x; ξ) dx = 0.

(13)

Here, R(ξ) is called the regular part of the Green’s function. When there is no drift,
corresponding to P ≡ 1, R(ξ) can be found analytically whenΩ is either a disk or rec-
tangle (cf. Kolokolnikov et al. 2005; Pillay et al. 2010). For arbitrary domains, G(x; ξ)

and R(ξ)must be computed numerically. Finally, in (10), the unknown constant χ can
be interpreted as

χ = 1

|Ω|
∫

Ω

U0(x)dx. (14)

To determine the linear algebraic system for γ j , we expand the solution in (10) as
x → x j and equate the resulting expression with the required singular behavior in (7).
This leads to

U0H (x j )+ 2π
N∑

k=1,k = j

νkγk G(xk; x j )+ ν jγ j
(
log |x − x j | + R(x j )

)

+χ ∼ ν jγ j log |x − x j | + γ j .

In this expression, the logarithmic terms in |x − x j | agree identically (as they should),
and from the non-singular terms, we obtain a linear algebraic system for the γ j for
j = 1, . . . , N . We summarize our result in the following statement.

Principal Result 2.1 (Drift) For ε � 1, the asymptotic solution for the MFPT (2) in
the outer region is given by

u ∼ U0H + 2π
N∑

j=1

ν jγ j G(x; x j )+ χ, (15a)

where the γ j for j = 1, . . . , N and the constant χ are the solution to the N + 1
dimensional linear algebraic system consisting of the N equations

γ j
(
ν j R(x j )− 1

) + 2π
N∑

k=1,k = j

νkγk G(x j ; xk)+ χ = −U0H (x j ), j = 1, . . . , N ,

(15b)
coupled to the constraint

2π
N∑

k=1

P(xk)νkγk =
∫

Ω

P(x) dx. (15c)
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Here, P = eψ , ν j = −1/ log(εd j ), where d j is the logarithmic capacitance of Ω j

defined by the solution to (6), U0H is the smooth solution satisfying (11), and the
Green’s function G with regular part R satisfies (13).

The linear system in Principal Result 2.1 is asymptotically diagonally dominant
when νmax = max j ν j is sufficiently small and so is uniquely solvable when νmax is
small enough. This system incorporates all of the logarithmic gauge functions in the
asymptotic solution for the MFPT, leaving an error term that is beyond-all-orders in(−1/ log(εd j )

)k . This error term, which we do not calculate here, arises from the local
gradient behavior of G as x → x j as well as from the dipole far-field behavior of the
canonical inner solution (6). An advantage of the hybrid method over the traditional
method of matched asymptotic expansions (cf. Kevorkian and Cole 1996) is that the
hybrid formulation is able to effectively “sum” an infinite series of logarithmic gauge
functions, thereby providing a highly accurate approximate solution.

In the absence of drift, for which P = 1 for x ∈ Ω , Principal Result 2.1 can be
simplified as follows:

Principal Result 2.2 (No Drift) For ε � 1, and in the absence of drift for which
P ≡ 1, the asymptotic solution for the MFPT (2) in the outer region is given by

u ∼ 2π
N∑

j=1

ν jγ j G0(x; x j )+ χ, (16a)

where the γ j for j = 1, . . . , N and the constant χ are the solution to the N + 1
dimensional linear algebraic system

γ j
(
ν j R0(x j )− 1

) + 2π
N∑

k=1,k = j

νkγk G0(x j ; xk)+ χ = 0,

j = 1, . . . , N ; 2π
N∑

j=1

ν jγ j = |Ω|. (16b)

Here, ν j = −1/ log(εd j ), d j is the logarithmic capacitance associated with the j th
prey patch Ω j , as defined by (6), while G0 is the Neumann Green’s function with
regular part R0 satisfying

ΔG0(x; ξ) = − 1

|Ω| + δ(x − ξ), x ∈ Ω ; ∂G0

∂n
= 0, x ∈ ∂Ω,

G0 ∼ 1

2π
(log |x − ξ | + R0(ξ))+ o(1), as x → ξ ;

∫

Ω

G0(x; ξ) dx = 0.

(17)

For an arbitrary domain, G0 and R0 must be computed numerically. However, when
Ω is the unit disk, and upon identifying x and ξ as points in complex notation inside
the unit disk, it is well known that (cf. Kolokolnikov et al. 2005)
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G0(x; ξ) = 1

2π

(
log |x − ξ | + log

∣∣∣∣x|ξ | − ξ

|ξ |
∣∣∣∣ − 1

2
(|x|2 + |ξ |2)+ 3

4

)
,

R0(ξ) = log
(

1 − |ξ |2
)

− |ξ |2 + 3

4
. (18)

We remark that the analysis leading to Principal Result 2.1 has assumed that |xi −
x j | = O(1) for any i = j . In Sect. 5.3 below, we show how to modify Principal
Result 2.1 to analyze the case where two patches are O(ε) close.

In general, for a given drift function and arbitrary landscape, the Green’s function, its
regular part, and the functionU0H must be computed numerically in order to implement
the asymptotic result in Principal Results 2.1 and 2.2. Although the Green’s function
depends on both the drift and the centers of the prey patches, it is independent of the
effective radius ε and the specific shapes of the prey patches. The effect of both the
radii and shape of the prey patches is analytically encoded in (15) through the products
εd j for j = 1 . . . , N . The logarithmic capacitances d j are known analytically for
various prey patch shapes and can be pre-computed by a boundary integral method
for arbitrary shapes. In this way, if either the size or shape of any of the prey patches
is altered, all that is required to implement the hybrid formulation is to simply change
the logarithmic capacitance d j for that particular prey patch, while still retaining the
same pre-computed Green’s function and function U0H . Then, by numerically solving
a simple linear system, we can readily compute the MFPT over a full range of ε. In
contrast, from the viewpoint of a direct full numerical solution of the PDE (2), a
different fine-scale numerical discretization would be required to compute the MFPT
for each specific collection of patch shapes and sizes. Changing either the effective
radius ε or shape of any one of the prey patches would require a new discretization
of the PDE (2). Finally, we remark that with our hybrid approach, we have avoided
the difficulty and loss of solution accuracy associated with inverting the numerically
ill-conditioned large linear algebraic system arising from the discretization of the full
PDE at small ε. This numerical ill-conditioning results from an eigenvalue of the
underlying matrix problem that tends to zero as ε → 0, which is proportional to the
reciprocal of the MFPT.

3 Numerical Verification for the MFPT With and Without Drift

We now compare numerical results obtained from our asymptotic analysis with full
numerical results obtained by solving the PDE (2) for the MFPT directly using the
finite element software package FlexPDE6. We remark that all full PDE computations
in this paper are done using this software. Although our asymptotic analysis is valid
for any arbitrary-shaped landscape and arbitrary patch shapes, for simplicity, we will
only compare asymptotic and numerical results for a circular-shaped landscape Ω
with circular-shaped prey patches. In the numerical comparisons below,Ω is taken to
have radius L = 1 km. In most of our computations below, the prey patches are taken
to be circles of radius 0.0067 km as suggested in McKenzie et al. (2009). This leads
to a non-dimensional prey patch radius of ε = 0.0067. In terms of the solution u to
the non-dimensional PDE, the dimensional MFPT T is given by T = L2u/Ddim. We
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Fig. 2 For the case of no drift,
and for one circular prey patch
of radius ε = 0.0067, the spatial
average of the MFPT obtained
from Principal Result 2.2 (solid
curve) is compared with the
corresponding full numerical
result (open circles) computed
from the PDE (2). The
horizontal axis is the distance of
the prey patch from the center of
the unit disk 0 0.2 0.4 0.6 0.8
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use the value Ddim = 0.41km2/h from McKenzie et al. (2009) as an estimate of the
diffusivity of the predator.

In the absence of drift, the asymptotic and full numerical results for the dimensional
average MFPT, Tave, assuming a uniform distribution of starting points in the unit disk,
are

Tasy ≡ χ
/

0.41, Tnum ≡ 1

0.41|Ω\Ωp|
∫

Ω\Ωp

u(x) dx, (19)

whereΩ is the unit disk,Ωp is the union of the prey patches, u solves (2) with ψ = 0
and χ is found from (15).

We first study the effect of the location of a single circular patch of radius ε = 0.0067
on the MFPT of the predator. In Fig. 2, we show a very favorable comparison between
the asymptotic average MFPT and the corresponding full numerical result as the patch
moves away from the center of the unit disk. We observe that the average MFPT
increases with the distance of the patch from the center of the disk. The reason for
this increase is that as the patch moves away from the center of the disk, its average
distance from all the points in the domain increases. Hence, the farther the patch is
from the center of the domain, the less reachable it is, and so the average MFPT must
increase.

Next, still assuming no drift, we compare results from our asymptotic analysis
with corresponding full numerical results for the case of three circular patches of a
common radius ε = 0.0067 inside the unit disk. We consider two realizations of this
configuration, corresponding to different locations of the three patches. The specific
locations of the prey patches together with a very favorable comparison between the
asymptotic and full numerical results for the dimensional average MFPT are shown
in Table 2.

For the three-patch configuration of the first row of Table 2, Fig. 3 shows that the
asymptotic result for the dimensional average MFPT is still in very close agreement
with the corresponding full numerical result on the range 0.0067 < ε < 0.06 of
the common circular prey patch radius ε. This suggests that the asymptotic results of
Principal Result 2.2 can still be used at only moderately small values of ε.
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Table 2 Spatial averages of the dimensional MFPT, assuming no drift, for two different three-patch con-
figurations in the unit disk Ω

Patch1 Patch2 Patch3 Avg. MFPT (h) (asy) Avg. MFPT (h) (num)

(0.5, 0.3) (−0.2, 0.6) (−0.4, −0.7) 1.6881 1.6878

(0.3, 0.8) (0.1, −0.6) (−0.5, −0.7) 1.9936 1.9921

All patches have radii ε = 0.0067, and we use Ddim = 0.41km2/h. The asymptotic and numerical results
are given in (19)

Fig. 3 For no drift, and for a
three-patch configuration with
circular patches centered at
(0.5, 0.3), (−0.2, 0.6), and
(−0.4,−0.7), the asymptotic
(solid curve) and full numerical
results (open circles) for the
dimensional average MFPT are
compared as the common patch
radius ε increases. The
asymptotic and full numerical
results are still rather close even
when ε ≈ 0.06
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3.1 Numerical Verification for the MFPT with Drift

Next, allowing for a drift term, we compare asymptotic results obtained from Princi-
pal Result 2.1 with corresponding full numerical results computed from (2) using
FlexPDE6. We take Ω to be a circular landscape of radius L = 1km, we fix
D = Ddim = 0.41km2/h, and we assume as in McKenzie et al. (2009) that there
is a drift term c(X) directed toward the origin with magnitude 0.085km/h. This gives
the predator a centralizing tendency to its den-site at the center of the landscape Ω .
The corresponding non-dimensional ψ in (2) has the form

ψ = −β|x|, β ≡ c0 L

Ddim
= 0.085

0.41
≈ 0.207317073. (20)

We refer below to β as the drift parameter, as it measures the relative effect of the
centralizing tendency of the predator to the isotropic diffusivity D associated with a
pure Brownian motion of the predator.

Since the predator has a centralizing tendency, it is not reasonable to assume that
the initial probability distribution S(X) of starting points inΩ is uniformly distributed
in Ω as for the case with no drift. Instead, as shown in McKenzie et al. (2009), the
dimensional S(X) is given by the steady state of the Kolmogorov equation

∂S

∂t
= ∇′ · J, J ≡ D∇′S − c(X)S, X ∈ Ω ;

J · n̂ = 0, X ∈ ∂Ω ;
∫

Ω

S dX = 1, (21)
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Fig. 4 Plot of the steady-state
solution S(r) to (21) in the unit
disk, as obtained from (23),
which gives the probability
distribution of initial starting
points for the predator under a
central drift. The heavy solid
curve is for β as given in (20),
while the solid curve is for
β ≈ 2.07317073, representing a
drift magnitude that is ten times
larger
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where the primes indicate derivatives with respect to the dimensional variable X. Here,
c(X) = −c0X/|X|, n̂ is the unit outward normal to Ω , and the boundary condition
on ∂Ω models a reflective outer boundary (cf. Gardiner 2009). In terms of S(X) and
the dimensional MFPT T , the distributional average of the MFPT over all possible
starting points in Ω is defined by

Tavg ≡
∫

Ω\Ωp

S(X)T (X) dX, (22)

where Ωp is the union of all the prey patches. Full numerical results for Tavg are
obtained by first solving the full PDE (2) numerically with FlexPDE6 and then employ-
ing a numerical quadrature to calculate the integral in (22).

WhenΩ is the unit disk, the steady-state solution of (21) is radially symmetric and
can be found analytically. In terms of a dimensionless polar coordinate system, (21)
readily reduces to

Srr + 1

r
Sr + β

r

∂

∂r
(r S) = 0, 0 < r < 1 ; Sr +βS = 0, on r = 1 ; β ≡ c0

Ddim
.

A first integral of the equation for S yields Sr + βS = k1/r , for some constant
k1. By imposing the reflective boundary condition on r = 1, we get k1 = 0, so that
S = S0e−βr for some constant S0. The constant S0 is found from the integral constraint∫ 1

0 r S dr = 1/(2π). In this way, S(r) is given explicitly by

S(r) = S0e−βr , S0 = 1

2π

[∫ 1

0
re−βr dr

]−1

= 1

2π

[
1

β2

(
1 − e−β) − e−β

β

]−1

.

(23)
Therefore, S is bounded in Ω but is not smooth at r = 0. In the limit β → 0 of small
drift, (23) yields that S → 1/π , which corresponds to the uniform distribution in the
unit disk. In Fig. 4, we plot S(r) versus r for the β as given in (20) and for ten times
this value, which corresponds to a ten times larger drift velocity magnitude.

The corresponding asymptotic result for the prediction of Tavg is obtained by
neglecting the O(ε2) contribution of Ωp in (22), and by using the outer solution for
T in the integral, so that T ≈ u/Ddim where u is given in (15a). In order to determine
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this outer solution u, we must numerically implement (15) of Principal Result 2.1.
This involves first calculating U0H from (11) as well as numerically computing the
Green’s function and its regular part as defined in (13). In terms of these quantities,
the linear algebraic system in (15) is then solved numerically, which determines the
outer approximation for the non-dimensional MFPT u from (15a).

To determine U0H whenΩ is the unit disk with a centralizing drift term, we substi-
tute P = e−β|x| into (11) with r = |x| to obtain that the radially symmetric function
U0H (r) satisfies

U ′′
0H +

(
1

r
− β

)
U ′

0H = −1 + Paveeβr ,

Pave ≡ 2
∫ 1

0
re−βr dr = 2

[
1

β2 − e−β
(

1

β2 + 1

β

)]
. (24)

We integrate (24) and impose U ′
0H (1) = 0. A further integration then yields the

explicit expression

U0H (r) = Pave

2

[
reβr

β
− eβr

β2 + 1

β2

]
+ 1

β2

∫ r

0

(
1 − eβρ

)

ρ
dρ + r

β
+ U0H (0),

(25a)
with the constant U0H (0) determined from the requirement that

∫ 1
0 rU0H (r) dr = 0.

For the drift velocity magnitude of McKenzie et al. (2009), and for a factor of ten times
this value as also used below, a simple numerical quadrature determines U0H (0) as

U0H (0) ≈ 0.0078943, when β ≈ 0.207317073 ;
U0H (0) ≈ 0.072267, when β ≈ 2.07317073. (25b)

To compute the Green’s function numerically from (13), we decompose G(x; ξ)

into a sum of a regular part and the appropriate logarithmic singularity given by (13).
That is, we let

G(x; ξ) = 1

2π
(log |x − ξ | + R(x; ξ )) . (26)

Substituting (26) into (13), and noting that Δ log |x − ξ | = 2πδ(x − ξ), we find that
R(x; ξ) satisfies

∇ · (P∇ R) = − 2π

|Ω| P(ξ)− ∇ P(x) · ∇ log |x − ξ |, x ∈ Ω ;

∂n R = −∂n log |x − ξ |, x ∈ ∂Ω ;
∫

Ω

R(x; ξ ) dx = −
∫

Ω

log |x − ξ | dx.

(27)

In this way, the solution for the Green’s function may be obtained from (26) by
numerically solving the regular problem (27) using FlexPDE6. The regular part R(ξ),
defined in (13), is then given by R(ξ) = R(ξ ; ξ). A key feature of FlexPDE6 is that
integral constraints, such as in (27), on the solution to a PDE can readily be imposed.
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Fig. 5 Distribution averages
Tavg of the asymptotic and full
numerical results for the MFPT
are plotted versus the distance of
a prey patch from the center of
the circular disk. The circular
prey patch has radius ε = 0.0067
and β = 0.085/0.41 as in (20)

0 0.2 0.4 0.6 0.8
4

5

6

7

8

9

distance of patch from center (km)

av
er

ag
e

M
F
P

T
(h

r)

0.01 0.02 0.03 0.04 0.05 0.06
1

1.2

1.4

1.6

1.8

2

2.2

patch radius (km)

av
er

ag
e

M
F
P

T
(h

r)

Fig. 6 MFPT (left panel) and the distributional average of the MFPT (right panel) for three circular patches
of prey of radius ε = 0.0067 centered at (0.3, 0.8), (0.1,−0.6), and (−0.5,−0.7). The drift parameter is
β = 0.085/0.41. Left panel full numerical result for the MFPT when ε = 0.0067. Right panel comparison
of the asymptotic (solid curve) and full numerical results (open circles) for the distributional average of the
MFPT as a function of the common prey patch radius ε on the range 0.0067 < ε < 0.06. The agreement
between the asymptotic and full numerical results is close even at these larger values of ε

We now give some asymptotic and numerical results for several configurations of
prey patches under the effect of a centralizing drift. We first study the effect of the
location of a circular prey patch of radius ε = 0.0067 in the unit disk Ω on the
distributional average of the MFPT for the predator. The results for various patch
locations, as displayed in Fig. 5, show a very close agreement between the asymptotic
and full numerical results. Similar to the case without drift, the distributional average
of the MFPT increases with the distance of the patch from the center of the disk.

Next, we compare asymptotic and full numerical results for the distributional aver-
age of the MFPT when the unit disk contains three circular patches each of the radii
ε = 0.0067. The drift parameter is β = 0.085/0.41. Two configurations of three
patches are considered. The results in Table 3 show a remarkably close agreement
between the asymptotic and full numerical results. A gray-scale 2-D plot of the full
numerical result for the MFPT corresponding to the second configuration of patches
in Table 3 and for ε = 0.0067 is shown in the left panel of Fig. 6. In the right panel
of Fig. 6, we compare the asymptotic and full numerical results for the distributional
average of the MFPT on the range 0.0067 < ε < 0.06. We observe that the asymp-
totic result is still very close to the full numerical result at the larger prey patch radius
ε = 0.06.
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Table 3 Distributional average [(see (22)] of the MFPT for a unit disk containing three circular patches of
radius ε = 0.0067 and with drift parameter β = 0.085/0.41

Patch1 Patch2 Patch3 Tavg (h) (asy) Tavg (h) (num)

(0.5, 0.3) (−0.2, 0.6) (−0.4, −0.7) 1.6916 1.6916

(0.3, 0.8) (0.1, −0.6) (−0.5, −0.7) 2.0312 2.0311

The asymptotic result is obtained from Principal Result 2.1, and the full numerical result is computed from
(2)
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Fig. 7 Left panel distributional averages of the MFPT with drift (solid curve) and without drift (dotted
curve), as obtained from Principal Results 2.1 and 2.2, respectively, are plotted versus the distance of the
center of a circular prey patch of radius ε = 0.0067 from the center of the disk. Here, the drift velocity
magnitude is 0.085 km/h, so that β = 0.085/0.41 ≈ 0.207317. The open circles are the full numerical
results computed from the PDE. Right panel same plot but for a ten times larger drift parameter value of
β = 0.85/0.41 ≈ 2.07317. The dotted curve, representing no drift, was favorably compared with full
numerics in Fig. 2

Next, we compare the distributional average of the MFPT with and without the drift
term. We recall that since S → 1/π as β → 0, the distributional average of the MFPT
tends as β → 0 to the average MFPT, which assumes a uniform distribution of starting
points inΩ . We will consider a single circular prey patch of radius ε = 0.0067, where
the distance of the prey patch to the boundary of the circular landscape is allowed to
vary.

As shown in the left panel of Fig. 7, when the centralizing drift velocity has magni-
tude 0.085 km/h, so that β = 0.085/0.41, there is only a slight difference between the
asymptotic results for the distributional average of the MFPT with and without drift.
However, when the magnitude of the drift velocity is increased by a factor of 10 to 0.85
km/h, so that β = 0.85/0.41 ≈ 2.07317073, in the right panel of Fig. 7, we show an
interesting crossover effect between the distributional average of the MFPT with and
without drift. From this figure, we observe that with larger drift and a centralizing ten-
dency, the distributional average of the MFPT is significantly smaller for prey patches
near the origin than for the case of pure Brownian motion. However, as the prey patch
moves toward the edge of the unit disk, the average MFPT with drift increases rather
noticeably and eventually surpasses the no-drift MFPT result. Intuitively, this suggests
that denning animals, which have a centralizing tendency, have a significantly larger
search time when the prey is located farther from the den. Moreover, it also suggests
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that for a given drift magnitude, pure diffusive motion leads to a lower average MFPT
than motion under a centralizing drift when the prey patch is sufficiently far from the
den.

4 The MFPT with Variable Diffusivity

In any habitat, the presence of terrestrial inhomogeneities such as hills, mountains,
lowlands, marshes, and rivers can affect animal movement in the habitat. The simplest
model of the mean first passage time that accounts for these inhomogeneities in the
landscape is to allow for a variable, but isotropic, diffusivity in the PDE for the MFPT
without drift. In this section, we show how the previous MFPT analysis can be modified
to allow for an arbitrary variable diffusivity D in an arbitrary 2-D domain. The non-
dimensional PDE for the MFPT can be written as

Δu(x) = −1/D(x), x ∈ Ω \ ∪N
j=1Ω

ε
j ; ∂u

∂n
= 0, x ∈ ∂Ω ;

u = 0, x ∈ ∂Ωε
j , j = 1, . . . , N . (28)

The problem is similar to the one without drift analyzed in Sect. 2.1, with the only
difference being that the diffusivity D here is spatially dependent. As such, since the
analysis needed to analyze (28) is similar to that for the case with constant diffusivity,
we will only give the main result obtained from an asymptotic analysis of (28).

Principal Result 4.1 (Variable Diffusivity) For ε � 1, the asymptotic solution for
the MFPT (28) in the outer region is given by

u ∼ U0H + 2π
N∑

j=1

ν jγ j G0(x; x j )+ χ, (29a)

where the γ j for j = 1, . . . , N and the constant χ are the solution to the N + 1
dimensional linear algebraic system

γ j
(
ν j R0(x j )− 1

) + 2π
N∑

k=1,k = j

νkγk G0(x j ; xk)+ χ = −U0H (x j ),

j = 1, . . . , N ; 2π
N∑

k=1

νkγk =
∫

Ω

1

D(x)
dx. (29b)

Here ν j = −1/ log(εd j ), d j is the logarithmic capacitance associated with the j th
prey patchΩ j , while G0 is the Neumann Green’s function with regular part R0 satis-
fying (17). In (29a), U0H (x) is the unique solution to
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ΔU0H = − 1

D(x)
+ 1

|Ω|
∫

Ω

1

D(x)
dx, x ∈ Ω ;

∂U0H

∂n
= 0, x ∈ ∂Ω ;

∫

Ω

U0H dx = 0. (30)

In terms of this solution, the average MFPT given a uniform distribution of starting
points in Ω is simply χ .

4.1 Numerical Verification

Next, we compare results from our asymptotic theory with full numerical results
obtained by solving the MFPT PDE with variable diffusivity using FlexPDE6. In our
computations, we took a circular domain of radius 1 km, so that the Neumann Green’s
function is explicitly available. The prey patches are all circles of radius 0.0067 km,
so that ε = 0.0067.

For simplicity, in order to be able to solve the problem for U0H analytically, we
consider two specific forms for D(x). Our first choice is the monotonically decreasing
radially symmetric diffusivity

D(x) = 1

1 + |x|2 . (31)

For this choice, the solution U0H to (30) is radially symmetric and is readily calculated
as

U0H = r2

8
− r4

16
− 1

24
. (32)

Our second choice for variable diffusivity is

D = 1

a0 + a1 cos2(2θ)
, (33)

for a0 > 0 and a1 > 0, chosen so that the Dave ≡ π−1
∫
Ω

D(x) dx = 1 is unity.

Since
∫ 2π

0

[
a0 + a1 cos2 ω

]−1
dω = 2π

[√
a0

√
a1 + a0

]−1 from residue calculus,
Dave = 1 when a0(a1 + a0) = 1. With this choice, we can contrast the effect of
variable diffusivity with that of a spatially uniform diffusivity with D = 1. For D as
given in (33), the problem (30) reduces to Δu0H = −(a1/2) cos(4θ). By separating
variables, the solution to (30) is

U0H = a1

24

(
r2 − r4

2

)
cos(4θ). (34)

Below, the results from the asymptotic theory and those computed from the full PDE
(28) are given in terms of the average MFPT, which assumes a uniform distribution
of starting points in the unit disk. Assuming Ddim = 0.41km2/h and L = 1km as the
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Fig. 8 For a single circular
patch of radius ε = 0.0067
centered at a distance r0 from
the origin in the unit disk Ω for
the variable diffusivity (28), the
asymptotic (solid curve) and full
numerical results (open circles),
as defined in (35), for the
dimensional average MFPT are
compared for a range of r0

0 0.2 0.4 0.6 0.8
7

8

9

10

11

12

13

distance of patch from center (km)

av
er

ag
e

M
F
P

T
(h

r)
Table 4 Asymptotic and numerical results for the average MFPT are compared for two different three-patch
configurations in the unit disk

Patch1 Patch2 Patch3 Avg. MFPT (h) (asy) Avg. MFPT (h) (num)

(0.5, 0.3) (−0.2, 0.6) (−0.4,−0.7) 2.5283 2.5283

(0.3, 0.8) (0.1,−0.6) (−0.5,−0.7) 2.9679 2.9678

Each circular patch has radius ε = 0.0067, and the variable diffusivity is given in (31)

radius of the circular landscape Ω , the dimensional asymptotic and numerical results
are

Tasy ≡ χ/0.41, Tnum ≡ 1

0.41|Ω\Ωp|
∫

Ω\Ωp

u(x) dx, (35)

whereΩ is the unit disk,Ωp is the union of all the prey patches, u solves (28), and χ
is calculated from (29).

We first consider the radially symmetric diffusivity (31) with a single circular patch
of radius ε = 0.0067 centered at a distance r0 from the origin in Ω . In Fig. 8, we
show a very favorable comparison between the asymptotic and numerical results for
the average MFPT as r0 varies on 0 < r0 < 1. As expected, from the monotone
decreasing behavior of D = D(|x|), the value of the average MFPT increases with
the distance r0 of the patch from the center.

Next, for the diffusivity (31), in Table 4, we show a very close comparison between
the asymptotic and numerical results for the average MFPT when the unit disk contains
three circular patches of radius ε = 0.0067. The results in Table 4 are shown for the
same patch configurations considered in Table 2 for the case D ≡ 1 with no drift.

Finally, we consider the diffusivity model (33) with a0 = 1/2 and a1 = 3/2 for
which |Ω|−1

∫
Ω

D dx = 1. For this model, D achieves its maximum value on the
rays θ = ±π/4 and θ = ±3π/4 and its minimum value on the rays θ = ±π/2
and θ = 0, π . In the left panel of Fig. 9, we consider two different patterns consist-
ing of four circular patches, each of the radii ε, that are placed equidistantly on a
concentric ring of radius 0.5 in the unit disk. The first pattern has patches centered
at (±0.5/

√
2,±0.5/

√
2), which lie along the rays where D is maximized. In con-

trast, the second pattern has patches centered at (±0.5, 0) and (0,±0.5), which lie
along the rays where D is minimized. For both patterns, in the left panel of Fig. 9,
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Fig. 9 Left panel asymptotic results from Principal Result 4.1 (solid curves) and full numerical results
computed from the PDE (28) (discrete points) for the dimensional MFPT T (0) versus the patch radius ε
for two different four circular patch patterns under the diffusivity model (33) with a0 = 1/2 and a1 = 3/2
for which |Ω|−1 ∫

Ω D dx = 1. The heavy solid curve is for patches centered at (±0.5/
√

2,±0.5/
√

2),
which lie along the rays where D is maximized. The solid curve is for patches centered at (±0.5, 0) and
(0,±0.5), which lie along the rays where D is minimized. For comparison, the dotted curve corresponds
to a spatially uniform diffusivity D ≡ 1 for which |Ω|−1 ∫

Ω D dx = 1. Right panel asymptotic results for
T (0) for four circular patches of radius ε = 0.025 centered at x j = 0.5 (cos(ω + π j/2), sin(ω + π j/2)),
for j = 0, . . . , 3, where 0 ≤ ω ≤ π/4. When ω = 0 and ω = π/4, the traps are aligned with the rays of
minimum and maximum diffusivity, respectively. We observe that ω = 0 minimizes T (0)

we compare asymptotic and full numerical values for the MFPT as a function of ε
on 0.0067 < ε < 0.0335, when the starting point is at the center of the disk. The
asymptotic result, measured in hours, is T (0) = u(0)/(0.41), where u(0) is computed
from (29a) of Principal Result 4.1. The corresponding full numerical result is com-
puted from the PDE (28). For comparison, in the left panel of Fig. 9, we also plot the
corresponding result assuming a spatially uniform diffusivity with D = 1 for which
|Ω|−1

∫
Ω

D dx = 1.
From the left panel of Fig. 9, we conclude that the effect of a variable diffusivity is

to increase the MFPT T (0). Moreover, we observe, somewhat counterintuitively, that
the MFPT T (0) is larger when the patches are aligned with the rays upon which D is
maximized. A possible explanation for this result is that the MFPT to a patch occurs as
a result of Brownian motion through all paths that begin at the origin, thereby sampling
regions of the landscape where D is both large and small. The MFPT T (0) does not
occur simply from a directed, or funneled, motion from the origin along a ray where
D is maximized. In fact, our results suggest that the expected capture time is smaller
when the patch is located near where D is smaller, suggesting that the predator catches
its prey faster when it diffuses more slowly near the patch. To further examine the
issue regarding the orientation of the patches with respect to the rays upon which D is
maximized, we next center the four traps at x j = 0.5 (cos(ω + π j/2), sin(ω + π j/2))
for j = 0, . . . , 3, where 0 ≤ ω ≤ π/4. Whenω = 0 andω = π/4 the traps are aligned
with the rays of minimum and maximum diffusivity, respectively. In the right panel
of Fig. 9, we plot the asymptotic result for T (0) versus this alignment angle ω for
fixed ε = 0.025. This plot shows that the two solid curves in the left panel of Fig. 9,
corresponding to patch alignment with the rays of minimum and maximum diffusivity,
do provide the minimum and maximum values of T (0), respectively.
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5 Asymptotic Calculation of the Splitting Probability

In this section, we use the hybrid asymptotic–numerical method for summing logarith-
mic expansions to calculate a splitting probability. Here, we assume that the predator
diffuses randomly on a landscape with N possible prey patches. One of the prey
patches, referred to as the target patch, is preferable to the predator. Our goal is to
calculate the splitting probability, defined as the probability of reaching this target
patch before any of the other N − 1 possible patches.

The probability, u(x), of reaching a specific target patch before any of the other
patches satisfies (cf. Redner 2001):

Δu(x) = 0, x ∈ Ω \ ∪N
j=1Ω

ε
j ; ∂u

∂n
= 0, x ∈ ∂Ω,

u = δ1 j , x ∈ ∂Ωε
j , j = 1, . . . , N , (36)

where δ1 j is the Kronecker symbol, with δ1 j = 1 if j = 1 and δ1 j = 0 otherwise.
In (36), the target patch is Ωε

1 . We again assume that as ε → 0, Ωε
j → x j ∈ Ω for

j = 1 . . . , N and that |xi − x j | = O(1) for i = j .

5.1 Asymptotic Analysis

In the outer region, away from the patches, we expand the solution to (36) as

u ∼ U0(x, ν)+ σ(ε)U1(x, ν)+ . . . . (37)

Here, ν ≡ (ν1, . . . , νN )with ν j = −1/ log εd j , where the logarithmic capacitance d j

is defined by (6). As before, the gauge function σ is beyond-all-orders with respect to
the logarithmic gauge terms.

Upon substituting the expansion (37) into (36), we obtain that the outer solution
U0 satisfies

ΔU0 = 0, x ∈ Ω \ {x1, . . . , xN } ; ∂U0

∂n
= 0, x ∈ ∂Ω. (38)

Since, in the outer region, the patches shrink to the points x j ∈ Ω as ε → 0 for j =
1, . . . , N , this problem must be supplemented by appropriate singularity conditions
as x → x j for each j = 1, . . . , N .

For the inner problem near the j th patch, we define y ≡ ε−1
(
x − x j

)
and the

magnified inner domain Ω j ≡ ε−1Ωε
j . In terms of y, we define the inner solution

q j (y) as q j (y) = u(x j + εy), and we expand it as

q j ∼ δ1 j + ν jγ j (ν)q0 j (y)+ α(ε, ν)q1 j (y)+ · · · , (39)

where γ j is an unknown constant to be determined and α is transcendentally small
with respect to any power of ν j . Upon substituting (39) into (36), we obtain that q0 j

satisfies (6).
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Next, by using the far-field behavior of q0 j as |y| → ∞ from (6), we obtain from
the matching condition between the inner and outer solution that U0 must have the
singularity behavior

U0 ∼ δ1 j + ν jγ j log |x − x j | + γ j , as x → x j , (40)

for each j = 1, . . . , N . The problem for the outer solution is then (38) subject to the
singularity behaviors (40) for each j = 1, . . . , N . These conditions lead to a linear
algebraic system for γ j for j = 1, . . . , N .

The problem (38) subject to (40) can be written inΩ in terms of Dirac delta functions
as

ΔU0 = 2π
N∑

k=1

νkγkδ(x − xk), x ∈ Ω ; ∂U0

∂n
= 0, x ∈ ∂Ω, (41)

subject to (40). By applying the divergence theorem to (41), we obtain the constraint
that

2π
N∑

k=1

νkγk = 0. (42)

We then write the solution to (41) as

U0 = 2π
N∑

k=1

νkγk G0(x; xk)+ χ, χ ≡ 1

|Ω|
∫

Ω

U0(x) dx, (43)

where χ is to be found and G0(x; ξ) is the Neumann Green’s function satisfying (17).
To determine the linear algebraic system for γ j for j = 1, . . . , N and χ , we expand

(43) as x → x j and enforce the required singular behavior (40). This leads, for each
j = 1, . . . , N , to

2π
N∑

k=1,k = j

νkγk G0(xk; x j )+ ν jγ j (log |x − x j | + R0(x j ))+ χ ∼ δ1 j

+ ν jγ j log |x − x j | + γ j .

The singular terms match identically, while the non-singular terms provide the linear
algebraic system for the γ j for j = 1, . . . , N and χ . We summarize our result as
follows:

Principal Result 5.1 For ε → 0, the asymptotic solution for the splitting probability
(36) is given in the outer region |x − x j | � O(ε) for j = 1, . . . , N by

u ∼ 2π
N∑

k=1

νkγk G0(x; xk)+ χ, (44)
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Fig. 10 Model domain for
numerical experiments.
Nontarget patches are located on
a concentric ring within a
circular-shaped landscape Ω
with the target patch located
outside the ring

where γ j for j = 1, . . . , N and χ are to be determined from the N + 1 dimensional
linear algebraic system

γ j
(
ν j R0(x j )− 1

) + 2π
N∑

k=1,k = j

νkγk G0(x j ; xk)+ χ = δ1 j , j = 1, . . . , N ;

N∑
k=1

νkγk = 0. (45)

This linear system is solvable when νmax ≡ max j ν j is sufficiently small.

5.2 Numerical Verification

We now verify Principal Result 5.1 of our asymptotic analysis with full numerical
results computed from (36) using FlexPDE6. In each of the numerical experiments
below,Ω is a circular domain of radius 1 km, for which the Neumann Green’s function
and its regular part are known from (17). Most of our results are quoted in terms of the
average splitting probability, defined as uave = |Ω|−1

∫
Ω

u dx. The asymptotic result
for this average probability is χ from (45).

We focus on the scenario where there are either four or eight nontarget circular
patches of radius ε that are equally spaced on a concentric ring inside the circular
domain Ω . The circular target patch, also of radius ε, is located either outside or
inside the ring. The case of eight patches on a ring is shown schematically in Fig. 10.

For our first experiment, we put four patches on a ring of radius 0.5 centered at
(0.3, 0.4), (−0.3, 0.4), (0.3,−0.4), and (−0.3,−0.4). For two locations of the target
patch, and for ε = 0.0067, in Table 5, we show a very favorable agreement between

123



Asymptotic Analysis of First Passage Time Problems 107

Table 5 Spatial averages of the splitting probability when the circular target is located either inside or
outside a four-patch ring with circular patches centered at (±0.3,±0.4)

Target patch location Asymptotic Numerical

(0, 0.001) 0.17201 0.172019

(0.5, 0.5) 0.15899 0.158992

All patches have radius ε = 0.0067. The asymptotic result is χ from (45)

Table 6 Spatial averages of the splitting probability when the circular target is located either inside or
outside an eight-patch ring with circular patches centered at (± 1

2
√

2
,± 1

2
√

2
), (±0.5, 0), and (0,±0.5)

Target patch location Asymptotic Numerical

(0.001, 0) 0.08802 0.08804

(0.65, 0.65) 0.08373 0.08374

All patches have radius ε = 0.0067. The asymptotic result is χ from (45)

Table 7 Same caption as in
Table 6 except that the radius of
each circular patch is increased
to 5ε = 0.0335

Target patch location Asymptotic Numerical

(0, 0.001) 0.07304 0.07423

(0.6, 0.6) 0.08726 0.08695

Fig. 11 Full numerical results
for the splitting probability
computed from (36) when the
circular target is centered at
(0.6, 0.6) outside a ring of eight
circular patches centered at
(± 1

2
√

2
,± 1

2
√

2
), (±0.5, 0), and

(0,±0.5). The radius of each
patch is 5ε = 0.0335 where
ε = 0.0067

the asymptotic result of Principal Result 5.1 and the full numerical result computed
from (36).

For our next experiment, we put eight patches on a ring of radius 0.5 centered
at (± 1

2
√

2
,± 1

2
√

2
), (±0.5, 0), and (0,±0.5). The very close agreement between the

asymptotic and full numerical results for this case is shown in Table 6.
For this same configuration of eight nontarget circular patches equally spaced on

an annular ring with an additional circular target patch, we increase the radius of
each patch to 5ε = 0.0335. The asymptotic and full numerical results are shown
in Table 7 for a target patch that is either inside or outside the ring of patches. For
this larger common patch radius, the asymptotic results still agree rather well with
the full numerical results. In Fig. 11, we show full numerical results for the splitting
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Fig. 12 Comparison of the full
numerical results computed
from (36) (open circles) and the
asymptotic results obtained from
Principal Result 5.1 (solid curve)
for the splitting probability
u(x, 0) on the horizontal axis,
when the circular target is
centered at (0, 0.1) inside a ring
of eight circular patches centered
at (± 1

2
√

2
,± 1

2
√

2
), (±0.5, 0),

and (0,±0.5). The radius of
each patch is ε = 0.0067

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

x , horizontal coordinate (km)

u
(x

,0
)

probability when the target patch is located outside the ring of patches. From this
figure, we observe that the probability of reaching the target patch first from an initial
starting point that is inside the ring of patches is considerably lower than the fractional
ratio 1/N , where N = 9 is the total number of patches. This reduction in the splitting
probability from its leading order limiting value of 1/N is due to a shielding effect
induced by the nontarget patches.

To further illustrate this shielding effect, we consider our eight-patch configuration
with a target patch centered inside the ring at (0, 0.1). The radius of each patch is
ε = 0.0067 as in Table 6. In Fig. 12, we plot the splitting probability u(x, 0) along
the horizontal axis on the range −1 < x < 1. From this figure, we observe that
the probability of reaching the target first is largest when the predator starts close to
the target patch centered near the origin. However, when the predator starts from an
initial location outside the “protective” annular ring, the probability of first reaching
the target patch before any of the other patches is significantly lower than 1/N where
N = 9 is the total number of patches. This example shows clearly that the spatial
distribution of nontarget patches can have a significant influence on the probability of
reaching a specific target first.

5.3 The Effect of Closely Spaced Patches

In our analysis so far, we have assumed that the patches are located at O(1) distances
from each other. We now consider the case where a circular target patch is O(ε) close to
another circular patch. We assume that these two circular patches do not overlap. These
two closely spaced patches can be effectively combined into a two-patch cluster of
size O(ε) centered at some x1 ∈ Ω . We will assume that there are an additional N −1
well-separated patches, not necessarily circular, centered at x j ∈ Ω for j = 2, . . . , N .
For this configuration of patches, the splitting probability satisfies

Δu(x) = 0, x ∈ Ω \ ∪N
j=1Ω

ε
j , Ωε

1 ≡ Ωε
1,0 ∪Ωε

1,1 ; ∂u

∂n
= 0, x ∈ ∂Ω,

u = 0, x ∈ ∂Ωε
j , j = 2, . . . , N ,

u = 1, x ∈ ∂Ωε
1,0 ; u = 0, x ∈ ∂Ωε

1,1. (46)
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The key feature for this problem is that we must analyze a new inner problem
near the two-patch cluster Ωε

1 . In this inner region, we introduce the inner variables
y = ε−1(x − x1) and q1(y) = u(x1 + εy). We then expand q1 as

q1 ∼ q� + ν1γ1qc. (47)

Here, ν1 = −1/ log(εd1c), where d1c is the logarithmic capacitance of the two-disk
cluster, and γ1 = γ1(ν) is a constant to be determined. In (47), the bounded function
q� is taken to satisfy

Δyq� = 0, y /∈ Ω1,0 ∪Ω1,1,

q� = 1, y ∈ ∂Ω1,0 ; q� = 0, y ∈ ∂Ω1,1,

q� ∼ q�∞, as |y| → ∞, (48)

where q�∞ is a constant to be determined. Here,Ω1,0 ≡ ε−1Ωε
1,0 andΩ1,1 ≡ ε−1Ωε

1,1.
In contrast, qc in (47) satisfies

Δyqc = 0, y /∈ Ω1,0 ∪Ω1,1,

qc = 0, y ∈ ∂Ω1,0 ; qc = 0, y ∈ ∂Ω1,1,

qc ∼ log |y| − log d1c + o(1), as |y| → ∞, (49)

where the far-field behavior determines the logarithmic capacitance d1c uniquely.
By using bipolar coordinates, we can solve (48) and (49) when Ω1,0 and Ω1,1

are two circular disks of radii a0 and a1 with a center-to-center separation l, all as
measured in the y variable, with l > a0 + a1. This allows us to calculate d1c and q�∞
in terms of a0, a1, and l. As shown in the “Appendix”, d1c is given by

log d1c = log (2c)− ξ0ξ1

ξ0 + ξ1
+

∞∑
m=1

[
e−mξ0 sinh(mξ1)+ e−mξ1 sinh(mξ0)

]

m sinh [m(ξ0 + ξ1)]
. (50)

Here, c > 0 is defined in terms of a0, a1, and l by

c ≡ 1

2l

√
l2 − (a0 + a1)

2
√

l2 − (a0 − a1)
2, (51)

while ξ0 > 0 and ξ1 > 0 are determined in terms of c, a0, and a1 by

ξ0 ≡ log

[
c

a0
+

√
1 + c2

a2
0

]
, ξ1 ≡ log

[
c

a1
+

√
1 + c2

a2
1

]
. (52)

Moreover, in the “Appendix,” we calculate q�∞ from (48) in terms of c, a0, and a1 as

q�∞ = ξ1

ξ0 + ξ1
. (53)
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For circles of a common radius, for which a0 = a1, (53) yields q�∞ = 1/2 as
expected, and (50) reduces to

log d1c = log (2c)− ξ0

2
+

∞∑
m=1

e−mξ0

m cosh(mξ0)
; c =

√
(l/2)2 − a2

0 ,

ξ0 = log

⎡
⎣ l

2a0
+

√(
l

2a0

)2

− 1

⎤
⎦ . (54)

With the inner solution near the two-patch cluster Ωε
1 determined in this way, the

rest of the analysis for (46) proceeds identically as in Sect. 5.1. In particular, in the
outer region, we expand u ∼ U0(x; ν)+ · · · , to obtain that U0 satisfies

ΔU0 = 0, x ∈ Ω \ {x1, . . . , xN } ; ∂U0

∂n
= 0, x ∈ ∂Ω,

U0 ∼ q�∞δ1, j + ν jγ j log |x − x j | + γ j , as x → x j , for j = 1, . . . , N ,

(55)

where δ1, j is the Kronecker symbol. The unknowns γ j for j = 1, . . . , N are deter-
mined by solving (55) in a similar way as done in Sect. 5.1. The result is summarized
as follows:

Principal Result 5.2 For ε → 0, the asymptotic solution for the splitting probability
(46) is given in the outer region |x − x j | � O(ε) for j = 1, . . . , N by

u ∼ 2π
N∑

k=1

νkγk G0(x; xk)+ χ, (56)

where γ j for j = 1, . . . , N and χ are to be determined from the N + 1 dimensional
linear algebraic system

γ j
(
ν j R0(x j )− 1

) + 2π
N∑

k=1,k = j

νkγk G0(x j ; xk)+ χ = δ1, j q
�∞,

j = 1, . . . , N ;
N∑

k=1

νkγk = 0. (57)

Here, ν1 = −1/ log(εd1c), where d1c is defined in (50), q�∞ is defined in (53), while
ν j = −1/ log(εd j ) for j = 2, . . . , N, where d j is determined from (6). In (57), G0 is
the Neumann Green’s function of (17) with regular part R0.

We now compare results from Principal Result 5.2 with corresponding results com-
puted from the full PDE (46) for the splitting probability. We first suppose that N = 1,
so that the two-patch cluster is the only patches in Ω . This models the simple sce-
nario where there are only two patches inΩ , with the circular target patch being O(ε)
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Fig. 13 Left panel plot of q�∞ from (53) versus a1/a0 for l0 = 2 (heavy solid curve), l0 = 3 (solid curve),
and l0 = 4 (dotted curve). Here, l0 = l/(a1 + a0) where l is the center-to-center separation between the
two patches. Right panel plot of q�∞ versus l0 for a1/a0 = 3 (heavy solid curve), a1/a0 = 1 (solid curve),
and a1/a0 = 1/3 (dotted curve)

close to another circular patch. Upon setting N = 1 in (57), we obtain that γ1 = 0 and
χ = q�∞. From (56), we conclude that the outer solution is spatially uniform and given
by u ∼ q�∞. This shows, as expected, that the splitting probability is asymptotically
independent of the starting point x ∈ Ω , when x is not O(ε) close to the two-patch
cluster.

From (51), (52), and (53), it can be shown that the outer limit q�∞ depends only on
the ratio a1/a0 of the disk radii together with the ratio l/(a0 + a1). To see this, we use
(51) to calculate the ratios c/a1 and c/a0 as

c

a1
= (1 + f )

2 f l0

√
l2
0 − 1

√
l2
0 −

(
f − 1

f + 1

)2

,
c

a0
= f

c

a1
, f ≡ a1

a0
,

l0 ≡ l

(a0 + a1)
. (58)

From (52) and (53), it follows that q�∞ depends only on f and l0. Moreover, it is readily
confirmed that 0 < q�∞ < 1. In the left panel of Fig. 13, we plot q�∞ versus a1/a0 for
various l0, while in the right panel of Fig. 13, we plot q�∞ versus l0 for various a1/a0.

These plots confirm the intuition that when a1/a0 > 1, so that the target patch has
a smaller radius than the other nearby patch, the fractional probability q�∞ of reaching
the target patch first through a Brownian motion starting from any point x ∈ Ω with
dist(x,Ωε

1 ) = O(1), satisfies q�∞ < 1/2. Moreover, these plots show that when both
patches have the same radii, irrespective of the distance between the patches, we have
q�∞ = 1/2.

To confirm this theoretical prediction, we set a1/a0 = 3 and l = 2(a0 + a1), so
that l0 = 2. Then, from (53), we calculate explicitly that q�∞ = 1/3. To confirm this
prediction, we compute full numerical solutions to (46) in the unit disk with N = 1
with a circular target patch of radius ε centered at the origin and a nearby patch of
radius 3ε, centered at x = (8ε, 0). Our computations, done for ε = 0.0067, show
that |Ω|−1

∫
Ω\Ωε

1
u dx ≈ 0.325, which is very close to the prediction of 1/3 from our

asymptotic theory.
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Fig. 14 Full numerical solution for the splitting probability computed from (46) for the case of a two-
patch cluster centered at (0.25, 0) and (0.25 + 4ε, 0), with an additional (remote) circular patch centered at
(0, 0.6). Each patch has a radius ε = 0.0067. Notice that the probability of first reaching the target patch is
only relatively high when starting near the target patch. In addition, due to a shielding effect, this probability
is rather low when starting from behind the remote patch at (0, 0.6)

Next, we consider Principal Result 5.2 for N = 2 when Ω is the unit disk. We
assume that a circular target patch of radius ε is centered at (0.25, 0) and that there
is a nearby circular patch, also of radius ε, which is centered at (0.25 + 4ε, 0). Upon
setting a0 = a1 = 1 and l = 4 in (54), we calculate d1c = 2.0613. Furthermore, since
a0 = a1, q�∞ = 1/2 from (53). In addition to this two-patch cluster, we assume that
there is a further nontarget circular patch, also of radius ε, which is centered at (0, 0.6).
We choose ε = 0.0067 to be the common radius of the three circular patches. From
the linear system (57) of Principal Result 5.2, we calculate the asymptotic prediction
for the spatial average χ of the splitting probability as χ ≈ 0.28914. In contrast, our
full numerical results as computed from the PDE (46) yield 0.28973 for the spatial
average of the splitting probability, which is very close to the asymptotic prediction.
The results of the full numerical simulation are shown in Fig. 14.

In a similar way, we can modify the formulae in Principal Result 2.1 for the MFPT to
analyze the case when two patches are closely spaced byO(ε). Suppose that the patches
with centers xN−1 and xN satisfy |xN −xN−1| = O(ε). In this case, the inner problem
(49) for a two-patch cluster replaces the canonical inner problem (6) associated with
isolated patches. To use (15) in Principal Result 2.1 to calculate the asymptotic MFPT,
we can simply replace the locations xN and xN−1 with xc ≡ (xN + xN−1)/2 and
replace the gauge functions νN−1 and νN with νc ≡ −1/ log(εd1c), where d1c is the
logarithmic capacitance of the two-patch cluster, as defined by the far-field behavior
in (49). Then, (15) becomes a linear system for χ and γ j for j = 1, . . . , N − 1 where
γN−1 ≡ γc is the strength associated with the two-patch cluster. When the two closely
spaced patches are circular disks, d1c is known analytically from (50).

The effectiveness of Principal Result 2.1 for the case of two closely spaced patches
is illustrated in Table 8 for three circular traps of a common radius ε = 0.025 and with
drift parameterβ = 0.085/0.41. In Table 8, we compare full numerical and asymptotic
results for the distributional average of the MFPT for three different spatial configura-
tions of the three circular patches. In our examples, the two circular patches centered
on the horizontal axis are become increasingly close together. The asymptotic results
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Table 8 Full numerical and asymptotic results for the distributional average of the MFPT for three different
spatial configurations of three circular patches

Patch1 Patch2 Patch3 Min. separ. (km) Avg. MFPT (h) (num) Isolated (h) (asy) Cluster (h) (asy)

(−0.5, 0.5) (0.5, 0) (0.7, 0) 0.15 1.5149 1.5178 1.5101

(−0.5, 0.5) (0.5, 0) (0.6, 0) 0.05 1.5952 1.6067 1.5938

(−0.5, 0.5) (0.5, 0) (0.56, 0) 0.01 1.6600 1.6890 1.6593

The patches have a common radius ε = 0.025 and the drift parameter is β = 0.085/0.41. The sixth and
seventh columns are the asymptotic results when the two closely spaced patches are treated as isolated
and as a cluster, respectively. The results show that as the two patches become closer, a better asymptotic
approximation to the MFPT is obtained by treating them as a two-patch cluster with a logarithmic capacitance
computed from (54)

in Table 8 are obtained by either treating the closely spaced patches as a “cluster”, as
described above, or else as “isolated” patches. In calculating the logarithmic capaci-
tance of the cluster, we used (54). The results show that when two patches are closely
spaced, it is preferable to approximate them as a cluster.

6 Second-Moment Analysis and Estimation of Variance

Previously, we have developed and implemented a hybrid asymptotic–numerical
method to approximate the MFPT for a predator to catch a prey. However, it may
also be important to estimate second-moment information, such as the variance, when
the first passage time has a significant spread around the mean. In order to determine
the variance of the first passage time (VMFPT), we will first calculate the second
moment of the first passage time (SMFPT).

It is well known that the SMFPT satisfies the following PDE in dimensional form
(cf. Redner 2001):

DΔ′M(X)+ 2T ′ = 0. (59)

Here, D is the constant diffusivity, T ′ is the mean first passage time, and M is the
second moment of the first passage time. The PDE is made dimensionless by defining
w = D2

L4 M and x = L−1X. The primed operators are defined with respect to X, while
the un-primed ones are with respect to the non-dimensional variable x. In addition, L
is the characteristic length of the domain under consideration. Recall that T = D

L2 T ′,
which is the non-dimensionalization used in the analysis of the MFPT in Sect. 2. The
corresponding PDE for the second moment in non-dimensional variables is

Δw(x) = −2T, x ∈ Ω \ ∪N
j=1Ω

ε
j ; ∂w

∂n
= 0, x ∈ ∂Ω,

w = 0, x ∈ ∂Ωε
j , j = 1, . . . , N . (60)

In (60), the asymptotic result for the MFPT T in the outer region was given by (16)
of Principal Result 2.2.
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6.1 Asymptotic Analysis

We now construct the solution to (60) asymptotically. The outer expansion has the
form

w ∼ W0(x, ν)+ σ(ε)W1(x, ν)+ . . . ,

where ν ≡ (ν1, . . . , νN ) with ν j = −1/ log(εd j ), and σ is assumed to be beyond-all-
orders with respect to the logarithmic gauge terms. The problem for W0 is

ΔW0 = −2T, x ∈ Ω \ {x1, . . . , xN } ; ∂W0

∂n
= 0, x ∈ ∂Ω, (61)

subject to certain singularity conditions as x → x j for j = 1, . . . , N . Up to negligible
O(ε) terms, the inner problem near the j th patch is identical to the one obtained in
(6) for the MFPT without drift. By using the far-field behavior of the inner solution
from (6), we match the inner and outer solutions to derive that W0 must satisfy

W0 ∼ ν jγ j log |x − x j | + γ j , as x → x j , j = 1, . . . , N , (62)

where γ j = γ j (ν) is a constant to be determined. Here, ν j = −1/ log(εd j ) and d j

is the logarithmic capacitance of the j th patch Ω j , as defined by the canonical inner
problem (6).

Next, by incorporating the correct strength of the logarithmic singularity, (61) can
be written in Ω as

ΔW0 = −2T + 2π
N∑

k=1

νkγkδ(x − xk), x ∈ Ω ; ∂W0

∂n
= 0, x ∈ ∂Ω, (63)

subject to the singularity behaviors (62). From the MFPT result (16) of Principal
Result 2.2, in the outer region, T has the outer asymptotic expansion

T ∼ 2π
N∑

k=1

νkΓk G0(x; xk)+ χ, (64)

where Γk = Γk(ν) for k = 1, . . . , N and χ satisfy the N + 1 dimensional linear
algebraic system

Γ j
(
ν j R0(x j )− 1

) + 2π
N∑

k=1,k = j

νkΓk G0(x j ; xk)+ χ = 0,

j = 1, . . . , N ; 2π
N∑

j=1

ν jΓ j = |Ω|. (65)
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Here, G0 is the Neumann Green’s function with regular part R0, defined by (17). By
substituting (64) into (63), we obtain that

ΔW0 = −4π
N∑

k=1

νkΓk G0(x; xk)− 2χ + 2π
N∑

k=1

νkγkδ(x − xk),

x ∈ Ω ; ∂W0

∂n
= 0, x ∈ ∂Ω,

W0 ∼ ν jγ j log |x − x j | + γ j , as x → x j , j = 1, . . . , N . (66)

To determine a constraint on the unknowns γ j for j = 1, . . . , N , we integrate (66)
and use

∫
Ω

G0(x; xk) dx = 0 together with the divergence theorem to get

N∑
k=1

νkγk = χ |Ω|
π

. (67)

We then decompose the solution to (66) as

W0 = W0H + W0p, W0p ≡ −4π
N∑

k=1

νkΓk W0pk, (68)

where W0pk = W0pk(x) for each k = 1, . . . , N , satisfies

ΔW0pk = G0(x; xk), x ∈ Ω ; ∂W0pk

∂n
= 0, x ∈ ∂Ω ;

∫

Ω

W0pk dx = 0. (69)

In contrast, the other term, W0H , in the decomposition (68) satisfies

ΔW0H = −2χ + 2π
N∑

k=1

νkγkδ(x − xk), x ∈ Ω ; ∂W0H

∂n
= 0, x ∈ ∂Ω,

W0H ∼ −W0p(x j )+ ν jγ j log |x − x j | + γ j , as x → x j , j = 1 . . . , N .

(70)

The solution to (70) can be written as W0H = 2π
∑N

k=1 νkγk G0(x; xk) + χ0H ,
where χ0H is a constant to be determined. Since

∫
Ω

W0p(x) dx = 0, this constant can
be interpreted as the spatial average χ0H = |Ω|−1

∫
Ω

W0(x) dx.
Finally, we expand W0H as x → x j and compare the resulting expression with the

required singularity behavior in (70). This yields for each j = 1, . . . , N that

2π
N∑

k=1,k = j

νkγk G0(x j ; xk)+ ν jγ j
(
log |x − x j | + R0(x j )

)

+χ0H ∼ ν jγ j log |x − x j | + γ j − W0p(x j ).
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The logarithmic terms agree automatically, and from the remaining terms, we obtain
a linear algebraic system for γ j for j = 1, . . . , N and for χ0H . We summarize the
result as follows:

Principal Result 6.1 For ε → 0, the asymptotic solution for the second moment (60)
is given in the outer region |x − x j | � O(ε) for j = 1, . . . , N by

w ∼ 2π
N∑

j=1

ν jγ j G0(x; x j )+ W0p(x)+ χ0H , W0p(x) = −4π
N∑

j=1

ν jΓ j W0pj (x),

(71a)
where Γ j for j = 1, . . . , N satisfy (65) and W0pj satisfies (69). In (71a), γ j for
j = 1, . . . , N and χ0H are determined from the N + 1 dimensional linear algebraic
system

γ j
(
ν j R0(x j )− 1

) + 2π
N∑

k=1,k = j

νkγk G0(x j ; xk)+ χ0H = −W0p(x j ) ;

N∑
k=1

νkγk = χ |Ω|
π

, (71b)

where χ is determined from the linear algebraic system (65).

To solve (71b), we must calculate W0p(x j ) for j = 1, . . . , N , where W0p is defined
in (71a) in terms of the solution W0pk to (69). To determine W0pk(x j ), we apply Green’s
identity to (69) and the problem (17) for G0(x; x j ) to derive

0 =
∫

Ω

(
W0pkΔG0(x; x j )− G0(x; x j )ΔW0pk

)

dx =
∫

Ω

(
W0pk

[
− 1

|Ω| + δ(x − x j )

]
− G0(x; x j )G0(x; xk)

)
dx.

Since
∫
Ω

W0pk dx = 0 from (69), we get that W0pk(x j ) = ∫
Ω

G(x; x j )G(x; xk) dx.
This determines W0p(x j ) in (71a) as

W0p(x j ) = −4π
N∑

k=1

νkΓk

(∫

Ω

G0(x; x j )G0(x; xk) dx
)
. (72)

In the next subsection, we solve the linear system (71b) for χ0H when Ω is the
unit disk. For this case, the Neumann Green’s function and its regular part are given
explicitly in (18). For a given patch configuration, the two-dimensional integrals in (72)
over the unit disk are calculated numerically using the cubature Gaussian quadrature
rules of Stroud (1971).

123



Asymptotic Analysis of First Passage Time Problems 117

6.2 Numerical Verification

We now confirm the results of the asymptotic analysis with full numerical solutions
of the PDE (60) computed using FlexPDE6 whenΩ is the unit disk. To determine the
SMFPT numerically, we solve the coupled PDE system for the MFPT and SMFPT
given by

Δw(x) = −2T, ΔT (x) = −1, x ∈ Ω \ ∪N
j=1Ω

ε
j ;

∂w

∂n
= 0,

∂T

∂n
= 0, x ∈ ∂Ω,

w = 0, T = 0, x ∈ ∂Ωε
j , j = 1, . . . , N . (73)

In terms of the non-dimensional SMFPT w from (73), the dimensional SMFPT M
is obtained from M = wL4/D2

dim, where L = 1km is the radius of Ω and Ddim =
0.41km2/h. In our numerical experiments below, we consider circular prey patches
of a common radius ε = 0.0067. Assuming a uniform distribution of starting points
for Brownian motion in Ω , the asymptotic and numerical results for the dimensional
average second moment are given by

Masy ≡ χ0H/D2
dim, Mnum ≡ 1

|Ω\Ωp|
∫

Ω\Ωp

M(x) dx, (74)

where M = w/D2
dim and χ0H is obtained from the numerical solution of (71b) of

Principal Result 6.1. In (74), Ωp is the union of all the prey patches. Finally, we can
then use the SMFPT and the MFPT to estimate the variance (VMFPT) of the first
passage time. This variance is calculated using VMFPT = SMFPT − MFPT2.

We first determine the effect of the location of a single circular patch within Ω
on the SMFPT and VMFPT. In Fig. 15, we show a rather close agreement between
the asymptotic and full numerical results for the average SMFPT (left panel) and the
average VMFPT (right panel) as the distance r0 of the center of the patch varies on
0 < r0 < 1. This figure shows that the average VMFPT increases rather significantly
with the distance of the patch from the center of the disk. We can interpret this result
in practical terms by comparing the standard deviation (square root of the VMFPT)
to the MFPT, in both cases averaged over all possible starting positions. The MFPT
corresponding to the results of Fig. 15 is plotted in Fig. 2. From these two figures,
we can immediately see that for all locations of the single trap, the average standard
deviation is close to the average MFPT. This means that the magnitude of the spread of
likely values of the first passage time is comparable to the MFPT itself, at least when
averaging over all possible starting positions. For this reason, the averaged MFPT is
not a good estimator of actual search times in this scenario and caution should be
employed when drawing biological conclusions based on this statistic alone.

Next, we compare the numerical and asymptotic results for the average SMFPT
and the average VMFPT when Ω contains three circular patches. The results for the
SMFPT and VMFPT are shown in Table 9 for two configurations of three patches. For
both patch arrangements inΩ , the asymptotic results for the SMFPT and the VMFPT
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Fig. 15 Left panel plot of the average asymptotic SMFPT (solid curve) and the corresponding full numerical
result (open circles) for one circular patch of radius ε = 0.0067 at a distance r0 from the origin in the unit
disk. Right panel the asymptotic (solid curve)and the full numerical result (open circle) for the average
VMFPT

Table 9 Spatial averages of the SMFPT and the VMFPT, measured in h2, for three circular patches of
radius ε = 0.0067 in the unit disk

Patch1 Patch2 Patch3 SMFPT (asy) SMFPT (num) VMFPT (asy) VMFPT (num)

(0.5, 0.3) (−0.2, 0.6) (−0.4,−0.7) 5.7593 5.8870 2.9095 3.0371

(0.3, 0.8) (0.1,−0.6) (−0.5,−0.7) 8.0728 8.3361 4.0982 4.3621

The asymptotic result is obtained from Principal Result 6.1, and the numerical results are computed from
(73)

obtained from Principal Result 6.1 are seen to compare reasonably favorably with the
full numerical results computed from (73).

We remark that in contrast to the very close agreement between full numerics and
asymptotics for the MFPT, the asymptotic and numerical results for the SMFPT and
VMFPT in Table 9 do not agree as closely at the same ε. This is likely due to the
fact that in asymptotically calculating the SMFPT from (60), we cannot use an exact
solution for T in the Poisson equation, but instead we use its asymptotic approximation
in the outer region. Without giving a formal error estimate, this does suggest that the
asymptotic approximation of the SMFPT will not be as good as for the MFPT.

For our final example, we revisit the four-patch configuration of Fig. 9 with D = 1.
Four circular patches of a common radius ε = 0.025 are equally spaced on a ring of
radius r0 inside the unit disk. In the left panel of Fig. 16, we plot the asymptotic result
for the average MFPT and the average VMFPT as a function of r0, which assumes
a uniformly distributed set of starting points for Brownian motion in the unit disk.
As one might intuitively expect, these averaged quantities are smallest when (roughly
speaking) the patches separate the unit disk into two halves of equal area. In the right
panel of Fig. 16, we plot asymptotic results for the MFPT and VMFPT for paths
starting at the center of the disk. As expected, the MFPT increases monotonically
with the distance r0 of the patches from the origin. The non-monotone behavior of
the VMFPT in the right panel of Fig. 16 can be interpreted as follows: For r0 very
small, the VMFPT is small since the predator is highly likely to quickly capture the
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Fig. 16 Four circular patches of a common radius ε = 0.025 are equally spaced on a ring of radius r0
inside the unit disk (see the caption of Fig. 9). Left panel plot of the dimensional asymptotic results for the
average MFPT, T̄ (h), heavy line, and the average VMFPT, V̄ (h)2, as a function of r0. Right panel plot of
the asymptotic results for the MFPT, T (0)(h), heavy line, and the variance of the MFPT, V (0)(h)2, versus
r0, for Brownian paths starting at the origin. The interpretation of these plots is given in the text

prey when starting nearby at the origin. However, when r0 is only moderately small,
the predator is somewhat less likely to quickly capture the prey, and if the predator
misses hitting a target site at first, it is likely to spend a large time wandering over a
large territory without prey before returning to the region near the origin where the
prey is located. This explains the local maximum of the VMFPT for moderately small
r0. For intermediate values of r0, the VMFPT has a local minimum, as expected, when
the ring of patches divides the unit disk into (roughly) two equal halves. The VMFPT
increases again for larger r0 since the predator will often wander over the large central
territory before reaching any of the target sites near the boundary. We again notice that
the standard deviation of the FPT is of similar magnitude to the MFPT and therefore
the distribution of FPT is not well described by the MFPT alone.

7 Discussion

We have formulated and implemented semi-analytical methods to calculate the MFPT,
the VMFPT, and the splitting probability, characterizing the movement of a predator
searching for prey on a landscape with localized prey patches. The motion of the
predator was assumed to have both a random and directed component. Our semi-
analytical method exploits the assumption that the ratio of the radius of a typical prey
patch to the overall length scale of the landscape is asymptotically small. Results
obtained from our asymptotic theory for the MFPT, the VMFPT, and the splitting
probability were found to agree very favorably with corresponding full numerical
results computed from the PDE’s.

There are several further directions that could warrant investigation. First, we have
only considered the case where the drift velocity in (1) can be written as the gradient
of a scalar potential. Although the inner problems near the prey patches remain the
same, for arbitrary drift velocities where (1) cannot be written in divergence form, it
becomes somewhat more challenging to analyze the outer problem away from the small
patches. Second, we have only considered Brownian motion with isotropic diffusivity.
However, the motion of animals in the environment is likely more complicated than
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this. For example, it is known that wolves (Canis Lupus) tend to move rapidly along
human-generated cuts in the forest environment (seismic lines related to oil and gas
exploration) and this can potentially increase the encounter rate with prey (James
1999; James and Stuart-Smith 2000; Whittington and St Clair 2004, 2005; Frair et al.
2005; McKenzie et al. 2012). As shown in McKenzie et al. (2009, 2012), one way
to model the behavior of a predator on a spatially heterogeneous landscape with a
network of seismic lines is to replace the isotropic diffusion term DΔ′T in (1) with an
anisotropic term of the form D11Txx + D12Txy + D22Tyy for some spatially varying
positive coefficients D11, D12, and D22 determined by the specific seismic network
topology. In principle, the hybrid asymptotic–numerical method developed in this
paper can still be applied to this extended model to analytically extract the effect of
small-scale prey patches, which are difficult to resolve numerically. Near the prey
patches, where the diffusion coefficients are locally constant, one can formulate, after
diagonalization of the diffusion operator, an inner problem similar to (6). However, the
main new challenge in implementing a semi-analytical method for the MFPT would be
to formulate, analyze, and then numerically compute an appropriate Green’s function
that plays a key role in characterizing the outer solution away from the prey patches.
Third, in our analysis, we have assumed that the prey patches are stationary in time. The
determination of the MFPT for the case of moving traps is a challenging open problem.
Even for the simple case of one trap moving on a circular ring inside a disk, the MFPT
was shown recently in Tzou and Kolokonikov (2015) to exhibit qualitatively new
behavior depending on the trap speed. As a fourth point, we have seen by calculating
the VMFPT in a few experimental geometries that the full distribution of FPT might
not be well described by its mean alone. This indicates that the MFPT may actually
be quite an imprecise tool when applied in ecological modeling. We intend to take up
this question in future work.

Finally, our analysis has focused only on deriving averaged quantities for predator
motion such as the MFPT and VMFPT. These quantities arise naturally in the long-
time approximation of the probability density function p(x, t) of finding the predator
at position x ∈ Ω at time t . With the goal of including short-time information for the
first passage density, in Isaacson and Newby (2013), uniform in time approximations
for p(x, t) was derived for a 3-D domain containing a small spherical target. It would
be interesting to extend the analysis of Isaacson and Newby (2013) to our 2-D context.
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(Atlantic Canada) Postdoctoral Fellowship. D.C. and M.J.W. gratefully acknowledge grant support from
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Appendix: The Logarithmic Capacitance of a Two-Disk Cluster

We first derive the result (50) for the logarithmic capacitance d1c of two disjoint circular
patches Ω1,0 and Ω1,1 of radii a0 and a1, respectively. Since d1c is invariant under
coordinate rotations, we can without loss of generality choose the centers of the circles
to lie along the horizontal y2 = 0 axis at some y1 = b0 > 0 and y1 = −b1 < 0,
respectively.
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For this special two-trap cluster, the inner problem (49) with y = (y1, y2), is

Δyqc = 0, y /∈ Ω1, j , j = 0, 1 ; q = 0, y ∈ ∂Ω1, j , j = 0, 1,

q ∼ log |y|, as |y| = (y2
1 + y2

2 )
1/2 → ∞, (75)

whereΩ1,1 andΩ1,0 are the circles (y1 + b1)
2 + y2

2 = a2
1 and (y1 − b0)

2 + y2
2 = a2

0 ,
respectively. The logarithmic capacitance d1c of the two-circle cluster is defined in
terms of the solution to (75) by the far-field condition

qc − log |y| = − log d + o(1), as |y| = (y2
1 + y2

2 )
1/2 → ∞. (76)

To solve (75), we introduce bipolar coordinates ξ and η defined by

y1 = c sinh ξ

cosh ξ − cos η
, y2 = c sin η

cosh ξ − cos η
. (77)

Then, |y| → ∞ corresponds to ρ ≡ (ξ2 + η2)1/2 → 0. From (77), we obtain
|y| ∼ 2c/ρ as |y| → ∞. Therefore, the far-field behavior in (75) is equivalent to
qc ∼ − log ρ as ρ = (ξ2 + η2)1/2 → 0.

With bipolar coordinates, lines of constant ξ map to disks of the form (y1 − yc)
2 +

y2
2 = a2, where yc = c/ tanh ξ and a = c/| sinh ξ |. As such, the right circleΩ1,0 with

center y = (b0, 0) and radius a0 corresponds to ξ = ξ0 > 0, where

a0 = c/ sinh ξ0, b0 = c/ tanh ξ0. (78)

In contrast, the left circleΩ1,1 with center y = (−b1, 0) and radius a1 corresponds to
ξ = −ξ1 < 0, so that ξ1 > 0, where

a1 = c/ sinh ξ1, b1 = c/ tanh ξ1. (79)

We label the center-to-center distance between the two disks as l, so that l = b0 + b1.
From (78) and (79), we obtain that ξ0 > 0, ξ1 > 0 and c are determined in terms

of the disk radii a0 and a1, and the center-to-center distance l, by the three equations

a0 = c/ sinh ξ0, a1 = c/ sinh ξ1, l = c/ tanh ξ0 + c/ tanh ξ1. (80)

From this system, we readily derive that l =
√

c2 + a2
0 +

√
c2 + a2

1 . By squaring this
relation, we can solve for c in terms of l to obtain, after some algebra, that c is given by
(51). With c known, ξ0 and ξ1 are obtained as in (52). We remark that, with c as given in

(51), the centers of the two disks are at y = (

√
c2 + a2

0, 0) and y = (−
√

c2 + a2
1, 0).
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Upon transforming (75) to bipolar coordinates, we obtain that Q(ξ, η) ≡
qc [y1(ξ, η), y2(ξ, η)] satisfies

Qξξ + Qηη = 0, −ξ1 ≤ ξ ≤ ξ0, |η| ≤ π,

Q = 0 on ξ = −ξ1, ξ = ξ0 ; Q, Qη 2π periodic in η,

Q ∼ −1

2
log

(
ξ2 + η2

)
+ O(1), as ξ2 + η2 → 0. (81)

To solve (81), we first observe that a special solution to Qξξ + Qηη = 0 with the
singularity behavior in (81) is

Q f (ξ, η) ≡ −1

2
log (cosh ξ − cos η) = −|ξ |

2
+ log 2

2
+

∞∑
m=1

e−m|ξ |

m
cos(mη). (82)

We then decompose Q = Q f + Q p, so that Q p satisfies Δy Q p = 0, is 2π periodic
in η, and satisfies the boundary conditions

Q p(ξ0, η) = ξ0

2
− log 2

2
−

∞∑
m=1

e−mξ0

m
cos(mη),

Q p(−ξ1, η) = ξ1

2
− log 2

2
−

∞∑
m=1

e−mξ1

m
cos(mη). (83)

To determine Q p, we first represent Q p as a Fourier cosine series in cos(mη) and then
use the boundary conditions (83) to identify the coefficients in the Fourier series. In
this way, we obtain that

Q p(ξ, η) = C0 + D0ξ +
∞∑

m=1

[Cm cosh(mξ)+ Dm sinh(mξ)] cos(mη), (84a)

where

C0 = − log 2

2
+ ξ0ξ1

ξ0 + ξ1

Cm = −
[
e−mξ0 sinh(mξ1)+ e−mξ1 sinh(mξ0)

]

m sinh [m(ξ0 + ξ1)]
, for m ≥ 1, (84b)

with similar formulae for the coefficients Dm for m ≥ 0.
Finally, to identify the logarithmic capacitance d1c of the cluster, we expand Q =

Q f + Q p as (ξ, η) → 0 to obtain

Q ∼ −1

2
log

(
ξ2 + η2

2

)
+ Q p(0, 0). (85)
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Since ξ2 + η2 ∼ 4c2/|y|2 from (77), we obtain from (85) that

qc ∼ log |y| − log
(
2
√

c
) + Q p(0, 0), as |y| → ∞. (86)

From this relation, together with Q p(0, 0) = ∑∞
m=0 Cm from (83), we identify d1c in

(76) as

log d1c = log (2c)− ξ0ξ1

ξ0 + ξ1
−

∞∑
m=1

Cm, (87)

where Cm for m ≥ 1 is given in (84b). This completes the derivation of (50).
Next, we derive (53) for q�∞ by first transforming (48) to bipolar coordinates. In

this way, we obtain that Q�(ξ, η) ≡ q� [y1(ξ, η), y2(ξ, η)] is the smooth function that
satisfies

Q�
ξξ + Q�

ηη = 0, −ξ1 ≤ ξ ≤ ξ0, |η| ≤ π,

Q� = 0 on ξ = −ξ1 ; Q� = 1 on ξ = ξ0 ; Q�, Q�
η 2π periodic in η.

(88)

The solution to this problem is simply Q� = (ξ + ξ1)/(ξ0 + ξ1). Since r → ∞ as
(ξ, η) → 0, we readily identify the far-field behavior in (48) as q�∞ = Q�(0, 0) =
ξ1/(ξ0 + ξ1), which confirms (53).
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