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Homoclinic snaking near a codimension-two Turing-Hopf bifurcation point in the Brusselator model
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Spatiotemporal Turing-Hopf pinning solutions near the codimension-two Turing-Hopf point of the one-
dimensional Brusselator model are studied. Both the Turing and Hopf bifurcations are supercritical and stable.
The pinning solutions exhibit coexistence of stationary stripes of near critical wavelength and time-periodic
oscillations near the characteristic Hopf frequency. Such solutions of this nonvariational problem are in contrast
to the stationary pinning solutions found in the subcritical Turing regime for the variational Swift-Hohenberg
equations, characterized by a spatially periodic pattern embedded in a spatially homogeneous background state.
Numerical continuation was used to solve periodic boundary value problems in time for the Fourier amplitudes of
the spatiotemporal Turing-Hopf pinning solutions. The solution branches are organized in a series of saddle-node
bifurcations similar to the known snaking structures of stationary pinning solutions. We find two intertwined
pairs of such branches, one with a defect in the middle of the striped region, and one without. Solutions on
one branch of one pair differ from those on the other branch by a π phase shift in the spatially periodic region,
i.e., locations of local minima of solutions on one branch correspond to locations of maxima of solutions on
the other branch. These branches are connected to branches exhibiting collapsed snaking behavior, where the
snaking region collapses to almost a single value in the bifurcation parameter. Solutions along various parts of
the branches are described in detail. Time dependent depinning dynamics outside the saddle nodes are illustrated,
and a time scale for the depinning transitions is numerically established. Wavelength variation within the snaking
region is discussed, and reasons for the variation are given in the context of amplitude equations. Finally, we
compare the pinning region to the Maxwell line found numerically by time evolving the amplitude equations.
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I. INTRODUCTION

Localized stationary solutions of reaction-diffusion systems
characterized by the coexistence of a flat, i.e., stationary (time
independent), spatially homogeneous state with a spatially
periodic state have recently been the subject of much analysis.
In the context of variational systems, a stationary front between
two stationary states is expected when both states possess
equal free energy. The point (or curve) in parameter space at
which the free energies are equal is referred to as a Maxwell
point (curve). When the coexistence is between two flat states,
a perturbation from the Maxwell point results in a time
dependent invasion of the energetically favored state into the
other. In [1], Pomeau explains that when the coexistence is
between a flat and spatially periodic state, there is a broadening
of the Maxwell point. Thus, within a finite-width region in
parameter space around the Maxwell point, a continuum of
such solutions exists. The broadening of the Maxwell point
may be explained by the fact that the energy difference must
be sufficiently large in order to displace the front connecting
the coexisting states by one wavelength of the periodic pattern.
Equivalently, displacement of the front only occurs sufficiently
far from the Maxwell point. This effect has been referred to
(e.g., [2] and references therein) as the pinning of the spatially
periodic front. By assembling two such fronts back to back,
one can construct stationary solutions in which a finite region
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of spatially periodic states is embedded in a background of
a flat state. Such solutions are known as spatially localized
states in a broader context (cf. [3]). These include, for example,
the experimental observations of stationary two-dimensional
radially symmetric “solitons” in a ferrofluid with an external
magnetic field applied vertically (cf. [4]), and one-dimensional
localized patterns in a nematic liquid crystal layer with a spa-
tially modulated optical feedback (cf. [5]). The properties of
the latter were shown to be consistent with previous theoretical
work on stationary pinning solutions in pattern forming partial
differential equations (PDEs), which we shall review next. The
pinning phenomenon is explained in detail in [1].

The (variational) 2–3 and 3–5 Swift-Hohenberg equations
for a real scalar field u(x,t), which exhibit quadratic-cubic and
cubic-quintic nonlinearities, respectively, have been studied
extensively to illustrate the phenomenon of pinning. Most of
these studies have focused on the subcritical Turing regime
where there is bistability between the flat and spatially periodic
states. In [6] for the 2–3 Swift-Hohenberg equation on an
unbounded domain, a continuum of pinning solutions was
shown to exist on branches that “snake” back and forth
in the bifurcation diagram forming a series of saddle-node
bifurcations. As predicted in [1], the snaking region was found
to straddle the Maxwell point. Solutions on these branches are
even in space and thus preserve the spatial reversibility symme-
try (x → −x,u → u) of the 2–3 Swift-Hohenberg equation.
The snaking region consists of two intertwined branches,
with solutions on one branch having a local maximum in
the central part of the spatially periodic region, and solutions
on the other branch having a local minimum. Solutions at
different points along one branch differ in the width of the
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spatially periodic region. In particular, traversal through two
saddle nodes or, equivalently, one back-and-forth cycle on
the snaking branch corresponds to two wavelengths of the
spatially periodic state being added or subtracted at the edges
of the spatially periodic region. In [2], it was found that in
addition to the two snaking branches of symmetric solutions, a
series of pitchfork bifurcations near the saddle nodes on these
branches are connected through a series of rungs (or ladders)
of asymmetric solutions. The entire bifurcation diagram of
stationary pinning solutions was therefore dubbed snakes and
ladders. Outside the snaking region, a depinning transition was
shown to occur in which wavelengths were either nucleated
or destroyed at the edges of the spatially periodic region. The
speed of depinning was calculated analytically and confirmed
numerically. The conservation of a spatial Hamiltonian was
shown to select the wavelength of the spatially periodic state
within the snaking region, and the wavelength variation across
the snaking region was qualitatively explained based on the
free-energy variation of the flat and spatially periodic states.
Studies of stationary pinning solutions, the analogs of which
are not addressed in these papers, include the effects of finite
domain lengths on snaking. In [7], it was shown that snaking
branches in a spatially periodic domain terminate on branches
of spatially periodic states whose wave number depends on the
domain length. It was also determined that these termination
points corresponded to the Eckhaus instability boundary. In
[8], it was found that nonperiodic and non-Neumann boundary
conditions eliminated entirely spatially periodic states of the
Swift-Hohenberg equation, replacing them with states with
defects at or near the boundary. In this case, instead of ter-
minating on spatially periodic branches, the snaking branches
either exit the snaking region and develop into branches of
large amplitude patterns, or they may turn back toward small
amplitude and terminate at other primary bifurcation points
on the flat state. In [9], a multiple scale analysis was used
to derive an envelope equation for pinning solutions of the
nonsymmetric generalized Swift-Hohenberg equation. More
recently, the entire snakes-and-ladders bifurcation diagram,
including in particular the width of the pinning region, was
constructed through a multiple scale analysis beyond all
algebraic orders for the 2–3 Swift-Hohenberg equation near the
onset of subcriticality (cf. [10]). Subsequently, a considerably
simpler construction using a variational approximation was
proposed (cf. [11]). For the 3–5 Swift-Hohenberg equation,
the additional up-down symmetry (x → x,u → −u) admits
two additional snaking branches of odd solutions (cf. [12,13]).
In contrast to the 2–3 case, traversal through four saddle nodes
on one snaking branch is required to add two wavelengths
at the edges of the spatially periodic region in the 3–5
Swift-Hohenberg equation (cf. [14]).

Another explanation for the existence of stationary pinning
solutions has been given in terms of reversible spatial dynamics
(see, e.g., [12,15–17] or [18–21] for spike patterns in singularly
perturbed reaction-diffusion systems). In this framework, the
locations in the complex plane of the spatial eigenvalues (in the
case of flat states) or spatial Floquet multipliers (in the case
of spatially periodic states), along with spatial reversibility
are the key components responsible for the existence of
pinning solutions. The most complete account to date of the
snakes-and-ladders bifurcation diagram from this perspective

can be found in [22], which formulated a set of hypotheses
about the connecting orbit between the flat and spatially peri-
odic states that guarantees snaking. Whereas the free-energy
description is limited only to pinning solutions of variational
systems, the spatial dynamics framework extends the theory
of pinning to a much broader class of systems. In particular,
a cubic-quintic Ginzburg-Landau equation can be derived
as a truncated normal form near weakly subcritical Turing
bifurcations, and its solutions yield insights into the location
of the pinning region in both variational and nonvariational
systems. While no true snaking is possible in this equation
due to phase rotation symmetry of the spatial dynamical
system, branches emanating from Eckhaus bifurcation points
exhibiting snake-like behavior (termed “protosnaking”) were
found near the nonvariational analog of the Maxwell point (cf.
[23]). Stationary pinning solutions organized along snaking
branches have indeed been observed in many nonvariational
systems. In [24], two snaking branches were computed for
the Lugiato-Lefever equation; in addition, it was shown that
there are other pinning solutions found by directly computing
the invariant manifolds to the flat and spatially periodic
states. A study of a nonvariational extension of the 3–5
Swift-Hohenberg equation in [25] stressed that asymmetric
pinning solutions on the ladders are expected to drift in
nonvariational systems. In [17], the forced complex Ginzburg-
Landau equations were shown to exhibit a different growth
mechanism by which periodic structures were nucleated or
destroyed in the middle of the spatially periodic region as
opposed to the edges. In this case, the codimension-two point
marking the onset of snaking corresponds to the simultaneous
occurrence of a (codimension-one) heteroclinic orbit between
two inequivalent flat states and a (codimension-one) super-
critical Turing bifurcation on one of them. Hence, the nature
of the bistability between flat and spatially periodic states in
this study differs from the aforementioned studies that mainly
focused on subcritical Turing bifurcations.

Nonvariational systems allow for temporal oscillations,
which have not been considered in the context of snaking
structures of pinning solutions. In particular, pinning solutions
characterized by a coexistence of Turing and Hopf states have
been observed in [26] in the vicinity of a codimension-two
Turing-Hopf point (C2THP) of the (nonvariational) Brussela-
tor model (see, e.g., [27–29] and the references therein), where
both the Turing and Hopf bifurcations were supercritical and
stable. Turing-Hopf coexistence has also been observed exper-
imentally, as in [30] for the voltages and currents of resistively
coupled nonlinear LC (inductor-capacitor) oscillators arranged
in a one-dimensional chain and driven by a constant voltage
at one end. Depending on experimental parameter values,
it was found that a front connecting a Turing domain to a
Hopf domain could propagate in either direction or remain
stationary. The same behavior was also observed numerically
in the continuous reaction-diffusion approximation of the
oscillator chain for parameter values near the C2THP. In
another experiment involving convection of a binary fluid
in an annular container (cf. [31]), stationary convective rolls
were found to coexist with traveling wave bursts, with relative
widths of each region depending on the Rayleigh number.

The activator-inhibitor Brusselator model, describing a
simplified autocatalytic reaction, has long been a paradigm
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of nonlinear analysis and is given by

ut = Duxx + E − (B + 1)u + vu2, x ∈ R, t > 0

(1.1a)

vt = vxx + Bu − vu2, x ∈ R, t > 0 (1.1b)

subject to appropriate initial and boundary conditions. Note
that, unlike the Swift-Hohenberg equations, the spatial dy-
namics of (1.1) are not Hamiltonian. Spatiotemporal patterns
near the Brusselator C2THP have also been computed for
the superdiffusive variant of (1.1) in [32]. Both the study
of [32] and that of [26] were restricted to using only time
evolution techniques to compute the pinning solutions, which
only yielded a very narrow view of all possible Turing-Hopf
pinning solutions, since only stable solutions can be computed
with a standard initial boundary value problem (IBVP) code.
Furthermore, the manner in which these solutions are orga-
nized on solution branches is difficult to ascertain. In this paper,
we use AUTO [33] to solve boundary value problems in time for
the 0, . . . , N spatial Fourier amplitudes of the solutions u and
v to (1.1) for appropriately large N , under the assumption of
spatial periodicity (the −N, . . . ,−1 modes are also accounted
for since we only consider real solutions). In this way, we
obtain both stable and unstable solution branches, and the
structure of these branches is readily obtained. Solutions on
these branches resemble stationary pinning solutions, only
with the flat state replaced by Hopf-type temporal oscillations.
The respective growth rates of the Turing and Hopf modes
near the C2THP assume the roles of the free energies of the
coexisting states in variational systems, with larger growth
rates implying greater dominance. While the equality of
growth rates is not the analogous Maxwell condition, the
“physical” roles of the growth rates and the free energies in the
respective systems are analogous. We remark that space-time
solutions presented in this paper involve interfaces between
regions in space that oscillate in time, and regions that are
spatially periodic and stationary in time. Such interfaces can
not be assigned to any of the four classes of defect solutions
proposed in [34] for time-periodic solutions of reaction-
diffusion systems, as the defects discussed generically serve
as interfaces between only traveling waves of nonzero speed.

This paper is organized as follows. In Sec. II, we briefly
review the derivation of the amplitude equations near the
C2THP of (1.1) and give conditions for Turing-Hopf bista-
bility. These results are used to facilitate a search in parameter
space for Turing-Hopf pinning solutions. In Sec. III A, we
describe the equations used to compute the pinning solutions
using the method of continuation in AUTO. We then present in
Sec. III B the snaking branches on which the pinning solutions
exist and discuss their relationship to the pure Turing and
pure Hopf branches. We describe the solutions found on these
branches and how they vary as the solution branch is traversed.
In Sec. III C, we illustrate the process by which solutions
depin when parameters are set a distance δ outside of the
snaking region, and give a numerical estimate of the scaling
of the depinning speed with respect to δ. We give a qualitative
explanation for the direction of depinning based on the relative
dominance of the Turing and Hopf modes. In Sec. III D, we
illustrate the dependence of the wavelength of the spatially
periodic state on the parameters of the Brusselator model. In

Sec. III E, we offer an explanation for the observed dependence
in the framework of properties of the amplitude equations
derived in Sec. II. We then conclude and discuss open problems
in Sec. IV.

II. TURING-HOPF BISTABILITY

In this section, we briefly outline the derivation of the
evolution equations for the amplitudes of the Turing and Hopf
modes near the C2THP. For a detailed analysis, see [35], or [32]
for the superdiffusive variant of Brusselator model. See [36]
for a review of normal form theory near the codimension-two
point, and [29,37] for a weakly nonlinear analysis of Turing
patterns of the regular and superdiffusive Brusselator models
in two dimensions. Stability results from analysis of the
amplitude equations will yield the regime of Turing-Hopf
bistability in which pinning behavior is possible, as it is in
this regime of bistability that the pure Turing and pure Hopf
modes may coexist in physical space.

The system (1.1) has one spatially homogeneous steady
state (u,v)� = (E,B/E)�. Here, � denotes the transpose. As
B is increased past BH = 1 + E2, the basic state loses stability
through a Hopf bifurcation, yielding spatially homogeneous
temporal oscillations of frequency ωc = E. As B is increased
past BT = (1 + E

√
D)2, a steady state Turing bifurcation

occurs, yielding a stationary spatially periodic pattern with
critical wave number kc = [E/(

√
1 + E2 − 1)]1/2. When the

Hopf and Turing bifurcations occur simultaneously, i.e., when
BH = BT , the point in parameter space is referred to as
a codimension-two Turing-Hopf point. This condition is
satisfied when D = Dc = [(

√
1 + E2 − 1)/E]2. To analyze

the slow-time evolution of the two modes near the C2THP, we
let B = BH + ε2μ and D = Dc + ε2ρ, where 0 < ε � 1 and
μ and ρ are bothO(1). When ρ > 0 (ρ < 0), the Hopf (Turing)
bifurcation is the first to occur as B is increased. Introducing
the slow time scale T = ε2t and the long spatial scale X = εx

and perturbing the steady state by (u,v)� = (E,B/E)� +
εaA(X,T )eikcx + εcC(X,T )eiωct + c.c., where a = [(E2 +
k2
c )/BH ,1]�, c = [−E(E + i)/BH ,1]�, and A(X,T ) and

C(X,T ) are the complex amplitudes of the Turing and
Hopf modes, respectively, the amplitude equations are readily
calculated as

AT = ζAXX + γA − g|A|2A − λ|C|2A, (2.1a)

CT = (κr + iκi)CXX + νC − (βr + iβi)|C|2C
− (δr + iδi)|A|2C. (2.1b)

The constants in (2.1) are given in the Appendix. All constants
in (2.1) are real and, with the exception of ν and γ , only
functions of the parameter E. The coefficient ν is given by
ν = μ/2, while γ is a function of μ, ρ, and E. The conditions
for supercriticality of the Turing and Hopf bifurcations are
g > 0 and βr > 0, where the latter condition is always satisfied
for the Brusselator model. A value of E for which the former is
satisfied is E = 1.4, which is the value used in all computations
presented herein. For this value of E and ρ > 0, the bifurcation
scenario is given in Fig. 9(g) of [35]. The pure Turing mode
stabilizes when μ (and thus the amplitude of the pure Turing
mode) is sufficiently large to suppress growth of the Hopf
mode. This value of μ can be readily computed from a linear

022908-3



TZOU, MA, BAYLISS, MATKOWSKY, AND VOLPERT PHYSICAL REVIEW E 87, 022908 (2013)

stability analysis of (2.1). These weakly nonlinear results were
used in the initial search for a pinning region in parameter
space. We remark that four constants in (2.1) can be normalized
by rescaling (A,C,X,T ). Although necessary for a complete
analysis of (2.1), we choose not to carry out this normalization
procedure in this paper for notational convenience.

III. SNAKING STRUCTURE AND PINNING SOLUTIONS

In this section, we first introduce the numerical procedure
to be used to compute the pinning solutions. Both time
evolution of the PDE system (1.1) and continuation for a
system of ordinary differential equations (ODEs) (given in
Sec. III A), obtained by representing the solutions by a finite
number of Fourier modes, are employed. We then present
the main results regarding the existence of a robust region
in parameter space in which stationary striped structures and
time-periodic oscillations coexist in the same spatial domain.
Such solutions vary continuously with the parameters of (1.1)
and lie on snaking branches, each of which is characterized
by a series of saddle-node bifurcations similar in appearance
to the well known snaking structures found in studies of
stationary pinning solutions. Two intertwined pairs of such
solution branches are shown to exist. The main difference
between solutions on these two pairs of branches is that on one
pair, a defect is present at the center of the striped region, and
on the other pair, no defect exists. Solutions on one branch of
one pair differ from those on the other branch by a π phase shift
in the spatially periodic region, i.e., locations of local minima
(maxima) of solutions on one branch correspond to locations of
maxima (minima) of solutions on the other branch. We discuss
where these branches bifurcate, and describe the differences
between solutions on different parts of each branch. For the
nondefect pair of solutions, we discuss the depinning transition
and wavelength selection. Lastly, we relate the results back to
properties of the amplitude equations.

A. Numerical methods

We employ two approaches to numerically determine the
bifurcation branches and the structure and stability of the
solutions on those branches. In the first approach, we solve

the IBVP for the PDE system (1.1) and evolve the initial
conditions to their eventual steady states. To determine the
structure and stability of the solution branches, we employ
AUTO, a continuation package which follows solutions along
the various branches and determines their stability. The IBVP
solver was used to (1) perform parameter searches to determine
the parameters for pinning, and (2) provide appropriate initial
guesses to be used in the AUTO computations. AUTO was then
used to compute all the solution branches that we found and
to determine their stability.

We now describe the process by which we employed
time evolution to compute pinning solutions. To locate the
region in parameter space where pinning is possible, we first
solved the IBVP system (1.1) with E = 1.4 using a Fourier
spectral method in space and a semi-implicit second order two
step predictor-corrector method in time. The diffusion terms
of (1.1) were treated implicitly, while the reaction terms were
treated explicitly. The latter were first computed in physical
space before being transformed into Fourier space, where all
time stepping was performed. The initial conditions for u and
v were set as

(u,v)� = (E,B/E)� + ε Re{aeikcxθ (x) + c[1 − θ (x)]},
(3.1)

θ (x) ≡ H (x + �/2) − H (x − �/2), � < L

on a domain of length L subject to periodic boundary
conditions, where H (x) is the Heaviside step function. Thus,
the initial condition (3.1) contains a pure Turing mode on
the interval [−�/2,�/2] and a pure Hopf mode on [−L/2,

− �/2) ∪ (�/2,L/2]. The u component of (3.1) is depicted in
Fig. 1(a). Note that the basic state of u is u = E = 1.4.

Fixing E = 1.4 and setting μ (equivalently, B) sufficiently
large as determined in Sec. II so that the pure Turing mode
is stable, we varied ρ (equivalently, D) until (1.1) yielded a
time-periodic solution marked by the coexistence of Turing
and Hopf modes on the same spatial domain. The large time
behavior of such a solution is depicted in the space-time plot
in Fig. 1(b), which shows a nearly stationary striped region
embedded in a background of low wave number Hopf-type
oscillations. Note that the locations of the interfaces between
the Turing and Hopf regions remain constant in time. In
all space-time plots, the spatial variable x is plotted on the

−60 −40 −20 0 20 40 60
1.2

1.3

1.4

1.5

1.6

x

u

(a) (b)

FIG. 1. (a) Line plot of a typical initial condition of u for L ≈ 137.37, E = 1.4, ε = 0.1, μ = 25, and ρ = 0.178 (equivalently, B = 3.21,
D ≈ 0.2666). (b) Space-time plot of u for large time starting from the initial condition in (a). Turing and Hopf modes coexist on the same
spatial domain in a time-periodic solution.
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horizontal axis, the temporal variable t is plotted on the
vertical axis, and dark (light) regions indicate larger (smaller)
values of u(x,t). Space-time plots of v(x,t) simply appear as
black-and-white inverted plots of u, and are thus not included.

Most of the solutions shown in this section resemble an
interval in time of Fig. 1(b) consisting of one complete cycle of
the oscillatory region. Analogous to the well studied problems
in homoclinic snaking of stationary solutions, (1.1) admits an
infinite multiplicity of solutions similar to Fig. 1(b) that differ
in the width of the striped region. While Fig. 1(b) appears to be
time periodic, all solutions that we have computed by means
of time evolution have exhibited a slight aperiodicity, possibly
due to the difference between the oscillation frequencies of
the pure Hopf mode and the mixed mode between Hopf and
Turing. However, time-periodic solutions do exist and can be
found using AUTO, which was the main tool in obtaining the
results reported in this paper.

One of the main capabilities of AUTO is the computation and
continuation of limit cycles of systems of ordinary differential
equations. To exploit this capability, we used AUTO to solve
the time-periodic BVP:

1

T

dûk

dt
= −D

(
2πk

L

)2

ûk + F̂ (u,v)k, ûk(0) = ûk(1),

k = 0, . . . ,N (3.2a)

1

T

dv̂k

dt
= −

(
2πk

L

)2

v̂k + Ĝ(u,v)k, v̂k(0) = v̂k(1),

k = 0, . . . ,N (3.2b)

where f̂k denotes the amplitude of the kth mode of the
(N+1)-mode Fourier transform of f . In (3.2), F (u,v) and
G(u,v) are the reaction terms on the right-hand sides of (1.1a)
and (1.1b), respectively, and T is the period of the solution as
determined by AUTO. As in the time stepping code, the reaction
terms were computed first in physical space before being
transformed into Fourier space. This formulation allowed use
of the basic elements of the time evolution code described
above, exploiting the fact that the IBVP solver directly
computes the right-hand side of (3.2). The initial guess used
to initialize the AUTO computations was the Fourier modes
of u(x,t) and v(x,t) taken between the times t0 � t � t1,
where u(−L/2,t0) and u(−L/2,t1) are both local maxima;
in Fig. 1(b), this condition corresponds to all slices in time
between two consecutive horizontal black stripes, or between
one complete oscillation of the Hopf mode. Here, u(x,t)
and v(x,t) are solutions computed by time evolution. While,
as noted previously, u(x,t0) is not identical to u(x,t1), the
aperiodicity is not so severe that AUTO is unable to converge
onto a time-periodic solution from the initial guess. Indeed,
the solutions that AUTO computes are exactly periodic in time.
We suspect that such time-periodic solutions to (1.1) exist,
although with an extremely small domain of attraction.

We make the following observations. First, in the example
in Fig. 1 with L ≈ 137.37, results of the bifurcation diagram
and solutions for u and v hardly changed as the number
of Fourier modes was increased from N = 128 to 256.
Comparing two corresponding saddle nodes in the snaking
region, the value of D at the saddle nodes differed in the two
resolutions by less than 0.004%. Thus, N = 128 was used in

the computations. The length L was chosen so that exactly
36 wavelengths of a pure Turing solution with wave number
k = kc would fit in the domain. However, as we will show in the
following, only 35 wavelengths are present when the solution
is continued to a near-pure Turing state. Second, a pinning
region in parameter space further into the nonlinear regime
was documented in [26]. This regime was found to exhibit
highly relaxational temporal oscillations that required a higher
temporal resolution in AUTO to resolve. This was not conducive
to this study, as the number of modes required to resolve the
spatial variation already led to time-intensive computations.
Further, results from AUTO indicate that solutions of the more
nonlinear parameter regime may not be connected through the
familiar snaking structure that will be presented in the next
section for the weakly nonlinear regime. Lastly, the norm used
as the measure of the solutions and plotted on the y axis of the
bifurcation diagrams below is given by

L2F =
√√√√∫ 1

0

N∑
k=0

[
û2

k(t) + v̂2
k (t)

]
dt. (3.3)

The norm (3.3) is close, but not exactly equivalent, to the L2

space-time norm, differing by a factor of 2 under the square
root for k 
= 0. Also, since only even solutions are considered,
ûk(t) and v̂k(t) are real for all k and t .

B. Main results

The complete bifurcation diagram of all solutions found
is shown in Fig. 2, where the diffusivity D is treated as
the bifurcation parameter and plotted on the horizontal axis,
and the norm (3.3) as the measure of the solutions plotted
on the vertical axis. Heavy (light) segments indicate stable
(unstable) solution branches. Representative solutions from
each branch are shown in the figures below. We begin with

0.26 0.27 0.28 0.29 0.3
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2.75

2.8

2.85

2.9

D

L
2
F

0.266 0.267

2.76
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B
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(D), B

Tπ
(D)

B
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B
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B
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, B
Pπ

B
T0

, B
Tπ

B
H

B
P0
(D), B

Pπ
(D)

FIG. 2. (Color online) Complete bifurcation diagram for B =
3.21, E = 1.4, L ≈ 137.37. The bottom two branches BT and B

(D)
T

are the stationary pure Turing and defect branches, respectively. The
top branch BH is the pure Hopf branch. The main snaking region
on the left consists of two pairs of intertwined branches BP 0 and
BPπ , and B

(D)
P 0 and B

(D)
Pπ . Connected to these branches in the manner

described in Fig. 5 are two distinct branches BC1 and BC2 exhibiting
collapsed snaking behavior. The inset is a magnification of the main
snaking region inside the rectangle.
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FIG. 3. Shown in (a) is a space-time plot of u at the saddle-node bifurcation point of the two Turing-Hopf pinning branches BP 0 and BPπ .
The solution resembles a pure Turing solution with a small amplitude temporal oscillation of period T ≈ 4.4179 in the shape of the spatial
envelope. The oscillations of the envelope can be inferred from (b) [time slice of (a) at t = 0] and (c) [time slice of (a) at t ≈ 2.1586]. The
parameters are B = 3.21, E = 1.4, L = 137.37, and D ≈ 0.2843. There are a total of 35 Turing wavelengths present.

a broad overview of each branch and discuss how they are
located with respect to each other. We then describe each
branch, and the corresponding solutions, in detail. We note that
all branches and their solutions, stationary and time periodic,
were computed by AUTO; different options were used to direct
AUTO to compute each type of solution.

Figure 2 includes two pure Turing branches BT 0 (local
maximum at x = 0) and BT π (local minimum at x = 0),
indistinguishable by the measure L2F . These two branches
arise from the rotational invariance of the solutions of (2.1a). In
particular, A =

√
(γ − ζk2)/gei(kx+φ) (|k| � √

γ /ζ ) is a so-
lution to (2.1a) for any φ when C = 0. However, within (1.1),
the phases φ = 0,π are the only ones that preserve the
spatial reversibility symmetry. The stability transition on the
pure Turing branches occurs at a Hopf bifurcation point
at D ≈ 0.284 71. An analysis of (2.1) (not presented here
as it is straightforward) predicts that, with ε2 = 0.01 and
μ = 25, the transition occurs at D ≈ 0.285 31, a difference of
approximately 6 × 10−4. The point of stability transition also
corresponds to the bifurcation point of the mixed mode. For
clarity, we have plotted only a portion of the two pure Turing
branches, and chosen not to plot the (unstable) mixed-mode
branch. The pure Hopf branch, denoted by BH , corresponds to
the time-periodic solution to (2.1b) with A = 0. The period of
oscillations on the pure Hopf branch is T ≈ 4.6623.

The two Turing-Hopf pinning branches BP 0 and BPπ are
connected through a saddle-node bifurcation near but not

coinciding with the stability transition of the pure Turing
branches. At this saddle-node point, the solution resembles
solutions along the pure Turing branches BT 0 and BT π , with
a small amplitude oscillation in time of period T ≈ 4.4179.
As is the case with all solutions described below, the period
of oscillations is close but not equal to the period of the pure
Hopf oscillations. The space-time plot of the solution for u at
the saddle node, along with two line plots of two particular
slices in time, are shown in Fig. 3. While the length of the
domain is able to accommodate exactly 36 Turing wavelengths
of critical wave number k = kc, only 35 are present in Fig. 3.
Hence, among the discrete band of pure Turing solutions, each
with a slightly different wave number allowed by the length of
the domain, we have shown in Fig. 2 only the two pure Turing
branches for which there are 35 wavelengths corresponding to
the same number as seen in Fig. 3. This pattern can be shown
to be Eckhaus stable by analyzing (2.1a) with C = 0.

The branches BP 0 and BPπ continue towards decreasing
values of D before beginning a snaking process in which the
two branches intertwine. In the snaking region, the solutions
on these branches resemble that of one temporal period of
Fig. 1(b). Because the L2F norm of the pure Hopf branch is
larger than that of the pure Turing branch, solutions higher
up on the Turing-Hopf pinning branches BP 0 and BPπ have a
narrower striped region (i.e., fewer stripes) than those on the
lower branches. Analogous to the distinction between the BT 0

and BT π branches, the two pinning branches are distinguished
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FIG. 4. Solutions at the bottom of the B
(D)
P 0 and B

(D)
Pπ branches. The oscillations of the spatial envelope (T ≈ 4.4167) can be inferred from

(b) [time slice of (a) at t = 0] and (c) [time slice of (a) at t ≈ 2.1991] for the B
(D)
P 0 branch. Time slices for the B

(D)
Pπ branch are shown in

(d) and (e) (T ≈ 4.4166). The parameters are B = 3.21, E = 1.4, L = 137.37, and D ≈ 0.285 44. Within the spatial envelope, 35 wavelengths
are present.

by solutions on BP 0 having a local maximum at the center
of the striped (Turing) region, and solutions on BPπ having a
local minimum. The upward sloping segments in the snaking
region are stable; all other solutions along the two branches
are unstable.

Another pair of intertwined pinning branches, B
(D)
P 0 and

B
(D)
Pπ , is also characterized by striped regions embedded in

a background of Hopf-type oscillations. However, solutions
on these two branches exhibit a defect in the central part of
the striped region. All solutions along these two branches are

unstable. In the same way that the branches BP 0 and BPπ

begin near a Hopf bifurcation point on the stationary pure
Turing branch, the B

(D)
P 0 and B

(D)
Pπ branches begin near a Hopf

bifurcation point on a pair of stationary defect branches B
(D)
T 0

and B
(D)
T π (indistinguishable by L2F ). The space-time solution

for u at the bottom of the B
(D)
P 0 branch is shown in Fig. 4(a),

while Figs. 4(b) and 4(c) are line plots of u at two instants
of time, indicating a slight temporal oscillation in the form of
the spatial envelope. Figures 4(d) and 4(e) show time slices of
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FIG. 5. Schematic bifurcation diagram of Fig. 2 illustrating
connections between branches. The dashed boxes represent snaking
regions. Dark segments indicate the existence of branches of stable
solutions.

the solution at the bottom of the B
(D)
Pπ branch, characterized by

a local minimum, instead of a local maximum, at the center
of the defect, centered at x = 0. Within the spatial envelope,
35 wavelengths are present. The stationary defect solutions
on the B

(D)
T 0 and B

(D)
T π branches were described analytically

in [17] in the framework of (2.1a) near a supercritical Turing
bifurcation. As in the case of two branches of pure Turing
solutions, the stationary defect solutions have either a local
minimum or maximum at the center of the defect.

Finally, to the right of the four snaking branches of pinning
solutions are two separate branches BC1 and BC2 that exhibit
properties similar to collapsed snaking (cf. [17] for stationary
collapsed snaking), where the snaking region collapses to
almost a single value in the bifurcation parameter. Solutions on
these two branches consist of two regions in space of approx-
imately antiphase pure Hopf-type oscillations separated by
striped Turing-type structures. Solutions at different locations
on each branch differ in the relative width of the two regions. A
schematic of the connections between all branches discussed
is shown in Fig. 5.

All solutions on the branches described are even about x =
0. We have not been able to find any solutions that are odd. By
time evolving (1.1) initialized with particular initial conditions
on a periodic domain, we attempted to compute odd solutions
in which two Hopf regions separated by two striped regions
oscillate antiphase. However, due to the apparent presence
of weak coupling of the Hopf regions through the striped
regions, the initially antiphase oscillations synchronize over
time. We were also unable to compute asymmetric solutions
that, in the stationary pinning solutions of the Swift-Hohenberg
equations (see, e.g., [10,12]), make up the “rungs” that connect
two intertwined snaking branches. Such solutions can be
constructed by “gluing” together parts of solutions on one
branch. However, when considering time-periodic solutions,
as we do here, each component must have the same temporal
period, which is generally not the case. As a result, AUTO will
not be able to converge to a time-periodic solution. This is a
fundamental difficulty with the present model, not encountered
in previous studies of stationary pinning regimes.

We now discuss each pair of branches in detail starting with
the two pure Turing branches. In Fig. 6, we show the solutions
at the point of the stability transition where a Hopf bifurcation
occurs, marked by a solid circle in Fig. 6(a), on the branches
BT 0 and BT π . The four pinning branches are also visible in
Fig. 6(a); in particular, the saddle-node point from which the
BP 0 and BPπ branches bifurcate can be seen to be located near
the aforementioned Hopf bifurcation point on the pure Turing
branches. Multiple Hopf bifurcation points occur on the BT 0

and BT π branches; the one marked by the solid circle located
at the stability transition point is the one that occurs at the
smallest value of D. The corresponding (stationary) solutions
for u are plotted in Fig. 6(b), which has a local maximum at
x = 0 (BT 0) and Fig. 6(c), which has a local minimum at x = 0
(BT π ). For clarity, only the interval x ∈ [−20,20] is shown.
The entire domain contains 35 wavelengths.

As stated above, the two Turing-Hopf pinning branches BP 0

and BPπ bifurcate from the saddle-node point located near the
stability transition point of the two pure Turing branches BT 0

and BT π . In Figs. 7(b) and 7(c), we show one space-time
solution for u from the lower part of each branch to illustrate
how the solutions on the branches differ from that of the
saddle node shown in Fig. 3(a). Similarities between Figs. 7(b)
and 7(c) are immediate when spatial and temporal periodicity
of the space-time plots are considered. This similarity is
apparent when comparing Fig. 7(c) to Fig. 7(d), the latter
of which has been periodically shifted in both space and
time from Fig. 7(b). The center of the striped region occurs
at x = 0 [or, by periodicity, the leftmost point in space of
Fig. 7(b)]. In Fig. 7(d), the center of the striped region is a
local maximum (dark stripe), while in Fig. 7(c), it is a local
minimum (white stripe). These two solutions differ slightly
both in the temporal period and the wavelength of the striped
region. The mechanism(s) that affect these two quantities is
an open problem. Experiments involving the time evolution
of (1.1) suggest that the selection of the wavelength of the
striped region is independent of initial conditions.

Snaking higher up the BP 0 and BPπ branches, the spatial
extent of the striped region is reduced through a series of
saddle-node bifurcations. In Fig. 8, we show the solutions at
two saddle nodes in the snaking region of the BPπ branch
indicated in Fig. 8(a) (the B

(D)
P 0 and B

(D)
Pπ branches have been

removed for clarity). We note in Fig. 8(a) that, while the saddle
nodes exhibit an approximate “lining-up property” (cf. [38])
where saddle nodes occur at approximately the same value
of the bifurcation parameter, we observe a nonmonotonic
convergence of saddle nodes in the parameter D, a departure
from previous results on stationary snaking branches. The
solution at the lower saddle node, shown in Fig. 8(b), is
Turing dominated, while the one at the higher saddle node,
Fig. 8(c), is Hopf dominated, consistent with the fact that in
Fig. 2, the stationary Turing branches have the smallest values
of L2F and the pure Hopf branch the largest. The periods
of the solutions also differ slightly, with that of the solution
higher on the branch closer to the period of the pure Hopf
solution. While the number of stripes is difficult to quantify
due to temporal oscillations and the interaction between Turing
and Hopf regions, the process by which solutions gain or lose
stripes can be clearly seen by comparing solutions at particular
points in time.
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FIG. 6. (Color online) Closeup of stability transition point (indicated by solid circle) on the pure Turing branches (a) and the corresponding
solutions for u on BT 0 (b) and BT π (c). The pure Turing branches are indistinguishable by the measure L2F . The parameters are B = 3.21,
E = 1.4, L ≈ 137.37, and D ≈ 0.2847.

In Fig. 9, we show the process of the nucleation of a Turing
cell, or stripe, as the BPπ branch is traversed downwards. In
particular, for a typical segment of the snaking branch, we

illustrate the difference between solutions at three consecutive
saddle nodes by plotting u(x,t0), where t0 ∈ [0,T ] is the instant
in time when the center of the oscillatory region in u attains a

0.2667 0.2672 0.2677 0.2682

2.69

2.7

2.71

2.72

2.73

2.74

D

L
2
F

(c)
B

Pπ

B
P0

(b) FIG. 7. (Color online) Solu-
tions on the lower part of the
Turing-Hopf pinning branches
BP 0 with D ≈ 0.267 02 (b) and
BPπ with D ≈ 0.266 73 (c). The
temporal periods are, respectively,
T ≈ 4.6450 and T ≈ 4.6452. In
(d), we show a periodically (tem-
porally and spatially) shifted plot
of (b), illustrating the similarity
between (b) and (c). The param-
eters are B = 3.21, E = 1.4, and
L ≈ 137.37.
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FIG. 8. (Color online) Progression of solutions along the snaking region (a) of the BPπ branch. For a solution on a low saddle node (b), the
striped region occupies the majority of the spatial domain, while for one on a high saddle node (c), the time oscillatory region is dominant. The
temporal periods of the solutions are T ≈ 4.6573 (b) and T ≈ 4.6597 (c). The parameters are B = 3.21, E = 1.4, L ≈ 137.37, D ≈ 0.266 85
(b), and D ≈ 0.266 82 (c).

local minimum in time. In Fig. 9(a), we indicate the three
saddle-node points of interest as well as two intermediate
points. In Fig. 9(b), the solution at saddle-node point (b) has
a main Turing region containing 10 local maxima at which
u has a value between 2 and 2.5. The main Turing region is
bounded between two pairs of local maxima of lesser value.
As the branch is traversed downwards, the two pairs of local
maxima grow in amplitude, as seen in Figs. 9(c), 9(d), and 9(e),
while very little is changed in the main Turing region. Once
the saddle-node point (f) is reached [Fig. 9(f)], the larger
of the pair of maxima has grown to approximately equal
height as the outer pair of maxima of the main Turing region.
Thus, as the branch was traversed from saddle-node point (b)
through saddle-node point (d) to saddle-node point (f), the
main Turing region gained one pair of maxima, or two Turing
wavelengths.

We make some remarks regarding the process illustrated
in Fig. 9. First, the mechanism of nucleation at the edge of
the Turing region, including in particular the nucleation of
two Turing wavelengths for every two saddle nodes, is the
same as that reported for the 2–3 Swift-Hohenberg equation
in [14]. Second, comparing Figs. 9(b) and 9(f) reveals that the
larger the extent of the Turing region, the more the central
stripes resemble that of the pure Turing stripes at the same
value of D. This trend suggests that there is weak coupling
between the two Turing-Hopf interfaces through the Turing

region, and that the coupling strength weakens the greater
the distance between the two Turing-Hopf interfaces. Third,
all corresponding space-time solutions of Figs. 9(b)–9(f) have
slightly different temporal periods, given in the caption of
Fig. 9. Lastly, we observe the same nucleation characteristics
for the defect pinning branches.

Solutions on the B
(D)
T 0 and B

(D)
T π branches are characterized

by a spatially periodic pattern contained within a spatially
varying envelope. Solutions on B

(D)
T 0 (B(D)

T π ) have a local
maximum (minimum) at x = 0. As indicated in Fig. 10(a),
both stationary defect branches are unstable. Multiple Hopf
bifurcation points occur on the two branches; the one marked
by the solid circle is the one that occurs nearest the bifurcation
point of the defect Turing-Hopf pinning branches B

(D)
P 0 and

B
(D)
Pπ . The two solutions at the Hopf bifurcation points are

shown in Figs. 10(b) and 10(c). Like the space-time solution
at the bifurcation points of the B

(D)
P 0 and B

(D)
Pπ branches

in Fig. 4, 35 wavelengths are present inside the spatial
envelope.

As seen in Fig. 10(a), the defect Turing-Hopf pinning
branches B

(D)
P 0 and B

(D)
Pπ begin near a Hopf bifurcation on

the stationary defect branches B
(D)
T 0 and B

(D)
T π . The space-time

solution at the bifurcation point is shown in Fig. 4(a). The
similarity between this solution and the stationary defect
solution at the Hopf bifurcation point is immediate upon
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FIG. 9. (Color online) Illustration of the nucleation process that occurs at the edge of the Turing region. In (a), the locations on the BPπ

branch of the subsequent figures are indicated. In the progression (b)–(f), the Turing region grows by a width of two wavelengths through
the increase in amplitude of a pair of local maxima at its edges. The corresponding values of D and temporal periods of the solutions are
D ≈ 0.266 82, T ≈ 4.6597 (b), D ≈ 0.266 65, T ≈ 4.6597 (c), , T ≈ 4.6596 (d), D ≈ 0.266 64, T ≈ 4.6595 (e), D ≈ 0.266 83, T ≈ 4.6594
(f). The parameters are B = 3.21, E = 1.4, and L ≈ 137.37.

comparing Fig. 4(b) to Fig. 10(b) and Fig. 4(d) to Fig. 10(c).
In Fig. 11, we show two typical defect Turing-Hopf pinning
solutions at low and high saddle-node points on the B

(D)
Pπ

branch [Fig. 11(a)]. Other solution branches have been
removed for clarity. The defect can be seen to be centered
around x = 0 in Figs. 11(b) and 11(c). As with the nondefect
pinning branches BP 0 and BPπ , solutions lower on the branch

have a larger striped region than those higher on the branch.
The manner in which Turing wavelengths are nucleated on
the branches BP 0 and BPπ also applies to solutions on the
defect pinning branches, and thus is not shown. We remark
that although stationary defect pinning solutions have not
been observed in the Swift-Hohenberg equations, they have
been found in a periodically forced Ginzburg-Landau equation
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FIG. 10. (Color online) Closeup of the Hopf bifurcation point (indicated by solid circle) nearest the saddle-node bifurcation point of B
(D)
P 0

and B
(D)
Pπ on the stationary defect branches (a) and the corresponding solutions for u on B

(D)
T 0 (b) and B

(D)
T π (c). The stationary defect branches

are indistinguishable by the measure L2F . The parameters are B = 3.21, E = 1.4, L ≈ 137.37, and D ≈ 0.285 44.

originally proposed in [39] and subsequently studied in detail
in [40]. In this example, the two “hybrid” snakes formed by

defect pinning solutions coexist in the same snaking region
as the two “primary” snakes formed by nondefect pinning
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FIG. 11. (Color online)
Progression of solutions
along the snaking region
(a) of the B

(D)
Pπ branch. For a

solution on a low saddle-node (b),
the striped region occupies the
majority of the spatial domain,
while for one on a high saddle-node
(c), the time oscillatory region is
dominant. The temporal periods
of the solutions are T ≈ 4.6533
(b) and T ≈ 4.6592 (c). The
parameters are B = 3.21, E = 1.4,
L ≈ 137.37, D ≈ 0.26690 (b), and
D ≈ 0.26683 (c).
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FIG. 12. (Color online) Progression of solutions along the collapsed snaking region (a) of the BC1 branch. The solutions in (b) and (c)
[locations on the branch indicated in (a)] differ in the ratio between the widths of the time oscillatory regions. The temporal periods of the solutions
are T ≈ 4.662 34 (b) and T ≈ 4.662 31 (c). The parameters are B = 3.21, E = 1.4, L ≈ 137.37, D ≈ 0.270 83 (b), and D ≈ 0.270 77 (c).

solutions, precisely as in Fig. 2. Besides, it was theoretically
predicted in [40] that as the spatially periodic region of the
pinning solution becomes wider along the snaking branches,
the locations of the saddle nodes on the two hybrid snakes
approach their limiting values from the other direction and
more slowly compared to those on the two primary snakes,
which again agrees with the upper portion of Fig. 2.

The collapsed snaking branches BC1 and BC2 lie to the
right of the four main snaking branches described above. All
solutions on the two branches are unstable. The BC1 branch
connects to BPπ , and BC2 connects to B

(D)
Pπ , both through

a complex array of saddle nodes that will not be described
here. A simplified schematic of these connections is shown in
Fig. 5. In Fig. 12(a), we show a closeup of the two collapsed
snaking branches. As the branch is traversed beginning from
the top, the snaking region appears to collapse to a single
value in D in a back-and-forth manner before broadening out
at the bottom. Two typical solutions on the lower [Fig. 12(b)]
and upper [Fig. 12(c)] parts of the BC1 branch are shown. As
either collapsed snaking branch is followed downward, the
ratio between the widths of the Hopf region centered around
the boundary and the one centered around x = 0 decreases.
This ratio becomes equal to 1 at the rightmost point of BC1

and the leftmost point of BC2, which we will refer to as the
symmetric point. After this point, the branch turns back onto
itself on the bifurcation diagram and the width ratio continues
to decrease. The solution at the symmetric point is invariant

under a spatiotemporal flip, defined as a translation in x by
half the domain size followed by a translation in t by half the
Hopf period. In general, the two solutions before and after
the symmetric point at the same location on the bifurcation
diagram are related to each other by the spatiotemporal flip.
This solution behavior is in direct contrast to regular snaking
discussed above in which solutions on lower and upper parts
of the branch differed in the widths of the spatially periodic
region, i.e., the number of Turing stripes. The fact that in the
latter case, stripes are nucleated or destroyed as the branch
is traversed, while in the former case, only the widths of
predominantly spatially homogeneous structures are altered,
offers a simple explanation for the fact that solutions such as
those in Figs. 12(b) and 12(c) lie on a collapsed snaking branch,
while those in, e.g., Fig. 8(b), lie on a snaking branch with
finite width. The difference between the solutions in Fig. 12
and those on the other collapsed snaking branch BC2 will be
illustrated in the following.

We make two remarks regarding Fig. 12. First, the time
oscillatory regions of space in Figs. 12(b) and 12(c) are flatter
than those of solutions described above [e.g., Fig. 11(c)].
Further, the frequency of these oscillations is closer to that
of the pure Hopf frequency. These characteristics suggest
that there is very little coupling between the time oscillatory
regions and the interfaces in between them. Second, the
nearly antiphase temporal oscillations in Figs. 12(b) and 12(c)
are separated by spatially oscillatory structures, while the
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FIG. 13. (Color online) In (a), the bottom of the BC1 and BC2 branches are shown. In (b), two slices of space-time solutions on BC1 (solid)
and BC2 (dashed) are shown. Their locations on the respective branches are indicated in (a) by solid circles. The spatially periodic regions
of the two solutions oscillate approximately antiphase. The periods are T ≈ 4.662 34 (solid) and T ≈ 4.662 29 (dashed). The parameters are
B = 3.21, E = 1.4, L = 137.37, and D ≈ 0.270 83 (solid line) and D ≈ 0.271 85 (dashed line).

corresponding branches in Fig. 12(a) snake back and forth in
their approach to a single value in the bifurcation parameter.
A direct analog of this scenario for stationary solutions,
where two spatially homogeneous states are connected by
spatially oscillatory fronts, is given in [17]. There, the spatially
oscillatory fronts were explained by the spatial eigenvalues
of the two spatially homogeneous states. In this case, they
form a quartet in the complex plane with nonzero real and
imaginary parts, with the nonzero imaginary parts responsible
for the spatially oscillatory front. For stationary solutions,
the difference between regular snaking and collapsed snaking
behavior has been understood as follows. Collapsed snaking
solutions are explained in [41] as the intersection of the two-
dimensional stable and unstable manifolds of two “stationary”
(in space) states in a four-dimensional spatial dynamical sys-
tem. This codimension-one intersection is the reason behind
the collapsed snaking structure of the solution branches; a
slight perturbation in the value of the control parameter would
lead to the breaking of the nonrobust intersection of the
manifolds. In contrast, the robust snaking region of regular
snaking solutions can be explained by a codimension-zero
intersection between a two-dimensional unstable manifold
of a stationary (in space) state with a three-dimensional
center-stable manifold of a periodic orbit in space, with spatial
reversibility guaranteeing the return orbit to the stationary
state. Extension of this description to the present case of
time dependent snaking behavior involves dimension counting
in the style of [34] in the infinite-dimensional phase space
of (1.1), and is left as future work.

In Fig. 13(b), we illustrate the difference between two com-
parable solutions on the BC1 and BC2 branches, respectively.
The solid curve shows the solution u(x) of Fig. 12(b) at the
time where u(0,t) is a local maximum. The dashed curve shows
the same slice of a similar solution on the other collapsed
snaking branch BC2. The respective locations of the two
solutions are shown in Fig. 13(a). As has been the distinction
between the 0 and π regular snaking branches, points in space
where solutions on BC1 attain a local maximum (minimum)
are approximately points where those on BC2 attain a local
minimum (maximum). This antiphase relationship between

the two collapsed snaking branches is not as exact as in the
regular snaking branches, perhaps due to the separation of the
collapsed branches in parameter space.

C. Depinning transition

Within the regular snaking region described above, the
solutions are time periodic and the relative widths of the striped
and time oscillatory regions remain constant in time. That is,
the Turing-Hopf front is pinned while the solution is inside
the snaking region. Outside the snaking region, the fronts are
expected to depin, as was the case for the 2–3 Swift-Hohenberg
equation in [2]. The direction of depinning may be inferred
from the weakly nonlinear analysis. In Sec. II, we found that
when ρ > 0, or equivalently D > Dc, the Hopf bifurcation
occurs first as B is increased. This suggests that when D is
increased, the Hopf mode becomes more dominant relative to
the Turing mode. Thus, when D is set to the right of the pinning
region, the Hopf region is expected to invade the striped region.
Figure 14 illustrates the depinning dynamics that occur in this
scenario. Figure 14(b) shows a space-time plot of u where the
temporal oscillations have been removed for clarity by only
recording times at which the center of the time oscillatory
region attained a local minimum in time. As expected, the Hopf
region (white) invades the striped region. The time evolution
of (1.1) was initialized with one slice in time of the space-time
solution of u and v at a particular saddle node as computed by
AUTO. The parameter D was set at D = Ds + δ with δ > 0,
where Ds is the value at the particular saddle node marked by
a solid circle in Fig. 14(a). Invasion of the striped region was
observed when the process was repeated with D set to the left
of the snaking region (Fig. 15).

The progression of the solution mirrors the depinning
of stationary pinning solutions in [2]. Initialized in the
neighborhood of a saddle node, the solution evolves in a
manner so as to approach the solution at the saddle node either
below it, if the striped state invades, or above it, when the Hopf
state invades. This progression can be inferred from Fig. 8, as
stripe-dominated solutions populate the lower portions of the
branch. As in [2], we observe that the rate of evolution is
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FIG. 14. (Color online) Shown in (a) is a closeup of the BPπ branch with the location of the initial condition indicated by the solid circle.
At the saddle node, D = Ds ≈ 0.266 83. The evolution up the branch at δ distance outside the snaking region is depicted by the vertical arrow.
The space-time depiction of the solution starting from this initial condition is shown in (b) for δ = 1 × 10−5. Only the time slices at which
the center of the time oscillatory region is at a local minimum are included. The slow-fast-slow evolution of L2S(t) of the time slices of (b)
is shown in (c) with time t on the horizontal axis. The corresponding slow and fast regions are indicated in (a). The δ−1/2 scaling of the time
of traversal between two saddle nodes is shown in the log-log plot in (d). The solid line is a least-squares fit through the data points (empty
circles). The dashed line has a slope of − 1

2 .

slow in the vicinity of a saddle node, increases away from the
saddle node, and decreases again near the next saddle node.
This slow-fast-slow progression past saddle nodes has also

been observed in nonlinear pulse splitting regimes (see, e.g.,
[38,42,43]). Figure 14(c) illustrates the slow-fast dynamics
by tracking the spatial norm L2S(t) of each slice in time of
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FIG. 15. (Color online) Shown in (a) is a closeup of the BPπ branch with the location of the initial condition indicated by the solid circle. At
the saddle node, D = Ds ≈ 0.266 49. The evolution down the branch at δ distance outside the snaking region is depicted by the large vertical
arrow. The space-time depiction of the solution starting from this initial condition is shown in (b) for δ = −1 × 10−5. Only the time slices at
which the center of the time oscillatory region is at a local minimum are included. A wavelength adjustment occurs at t ≈ 2 × 104. The final
pure Turing state contains 35 wavelengths. The parameters are B = 3.21, E = 1.4, and L = 137.37.
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Fig. 14(b). The L2S norm is defined as

L2S(t) =
√

1

L

∫ L/2

−L/2
u2(x,t) dx.

Note that, unlike the L2F norm in (3.3), L2S(t) decreases as the
width of the striped region decreases. As seen in Fig. 14(c), the
norm decreases in a steplike progression in time, suggesting
a sequence of destruction events separated by long intervals
of relatively little change. Because the saddle nodes do not
line up exactly, times spent near each saddle node are not
uniformly distributed. We finally remark that the destruction
events do not continue until the system reaches a pure Hopf
state. This is due to the presence of stable branches that extend
beyond the snaking region to the right, which can be seen in
Fig. 14(a) as well as in Fig. 2. However, the progression of a
Turing-Hopf pinning solution down the left side of the snaking
region does evolve to a pure Turing state, seen in Fig. 15(b).
This is suggested by the snaking diagram shown in Fig. 15(a).
A wavelength adjustment occurs at t ≈ 2 × 104 in Fig. 15(b)
so that the final state, like the pure Turing solutions described
in Sec. III B, has 35 wavelengths.

Repeating the above procedure for various δ, we observe
that the time of traversal from one saddle node to the next scales
approximately as δ−1/2, the same scaling found in [2] for the
2–3 Swift-Hohenberg equation. This scaling was determined
only by the time to traverse from the starting saddle node,
indicated in Fig. 14(a), to the one immediately above it. We
numerically determined the time by calculating the difference
between the appropriate time slice u(x,t0) of the solution
computed by AUTO at the second saddle node to every time
slice of Fig. 14(b). The time at which the L2S norm of the
difference was minimized was taken to be the time at which
the solution was considered to have reached the second saddle
node. The log-log relation of the traversal time to the distance
δ from the saddle node is shown in Fig. 14(d); the solid line
is a least-squares fit through numerical data (empty circles),
and the dashed line has slope − 1

2 . We finally remark that the
aforementioned slight aperiodicity of the temporal oscillations
in time evolved solutions of (1.1) makes it difficult to determine
whether an integer number of temporal oscillations occur

between saddle-node transitions. This difficulty is exacerbated
by the vast difference in the time scales between one temporal
period and the transition time.

D. Wavelength selection

In studies of pinning solutions in the stationary Swift-
Hohenberg equations, the wavelength of the periodic state was
shown to vary within the snaking region. This variation can
be understood by the conservation of a spatial Hamiltonian
(cf. [44]), a property not available in the Brusselator model.
However, in the latter case, the wavelength of the Turing
state also varies within the snaking region and is distributed
evenly among all stripes. We illustrate this phenomenon for
solutions on the BPπ branch. Figure 16(a) shows a scatter
plot of the wavelength of the striped region for solutions in
the snaking region. It shows that, generally, the wavelength
λ increases as the parameter D increases. Deviation from
the trend near the top of Fig. 16(a) occurs for solutions near
the top of the snaking branch. For those solutions, the Hopf
region has significant influence on the entire striped region as
a result of the Turing-Hopf coupling. For a typical solution,
Fig. 16(b) shows the x locations of each individual local
maximum. The linear relationship implies a spatially uniform
wavelength throughout the striped region. We note that the
critical wavelength λc is λc ≈ 3.8158 and the value of D at the
C2THP is Dc ≈ 0.264 83. Thus, Fig. 16(a) shows that when
D is closer to Dc, the wavelength λ is closer to λc. We also
observe this trend with the parameter B; the closer B is to BH ,
the closer λ is to λc.

There is an important difference, however, between the
wavelength selection in Fig. 16(a) and that found for
the (variational) 3–5 Swift-Hohenberg equation in [44]. In
the case of the latter, the snaking region straddles a Maxwell
point, a point of energy balance between the homogeneous
and spatially periodic states. Deviation from the Maxwell
point in the direction that favors the periodic state causes it
to expand, resulting in a uniform increase in wavelength of the
entire spatially periodic region. Further deviation beyond
the snaking region triggers a depinning transition where
the spatially periodic state invades the homogeneous state,
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FIG. 16. Shown in (a) is a scatter plot of the wavelengths λ of the striped region of solutions on the snaking segments of the BPπ branch.
Most of the data points are concentrated in the lower region of the plot and suggest a positive correlation of λ with D. The approximately linear
behavior shown in (b) of the locations of local maxima of a typical solution indicates equally spaced peaks and spatially uniform wavelengths.
The parameters are B = 3.21, E = 1.4, and L = 137.37.
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leading to a picture similar to Fig. 15(b). The reverse is
true when deviation from the Maxwell point energetically
favors the homogeneous state. In this case, the picture would
resemble Fig. 14(b). Thus, the variation of the wavelength
within the snaking region is consistent with the depinning
process: when the bifurcation parameter is varied so as to
increase the wavelength, further variation of the parameter
in the same direction to outside the snaking region would
lead to an invasion of the periodic state. Conversely, when
the parameter is varied so as to decrease the wavelength,
further variation to outside the snaking region would result in
an invasion of the homogeneous state. This relation between
wavelength selection and depinning direction does not apply
in the case of the Turing-Hopf pinning solutions, however.
Given the depinning results of Sec. III C, the reasoning above
would suggest that the wavelength of the striped region should
decrease (increase) when D increases (decreases). Figure 16(a)
suggests that the opposite is true for the Turing-Hopf pinning
solutions. Thus, the wavelength selection within the snaking
region is unrelated to the direction of depinning. The latter is
determined by the relative dominance between the Turing and
Hopf modes and was explained in Sec. III C. An explanation
for the former is given in the next section.

E. Comparison of pinning region to results
based on amplitude equations

Like the Turing-Hopf pinning solutions described in
Sec. III B for the full Brusselator model (1.1), there also
exist Turing-Hopf solutions of the amplitude equations (2.1).
In such solutions as that in Fig. 17(a), regions in space
where (|A|,|C|) = (0,C0) are connected by approximately
exponential monotonic fronts [closeup in Fig. 17(b)] to regions
where (|A|,|C|) = (A0,0). We note that while |C| is stationary,
C(x,t) is complex and oscillates periodically in time. The
widths of the Turing and Hopf regions are arbitrary and thus a
continuum of solutions exists for an appropriate parameter set.
Such solutions of the amplitude equations translate to solutions
similar to that shown in Fig. 8 for the full Brusselator model.
However, these solutions of the amplitude equations exist only
on a codimension-one subset in parameter space, while the
snaking region of the Brusselator model is codimension zero.

This point is developed further below. We remark that while
Fig. 17(a) resembles the mesa patterns constructed in [45] for
a particular scaling of (1.1), that analysis does not appear to
be applicable to (2.1).

Above, A0 = √
γ /g is the spatially homogeneous pure

Turing amplitude, while the amplitude of the Hopf mode
C0 ≈ √

ν/βr is slightly affected by interaction with the Turing
mode; its exact determination is beyond the scope of this
paper. The reason that only the spatially homogeneous Turing
amplitude needs to be considered is the property that the spatial
dynamics of (2.1a) conserves a quantity in X (see, e.g., [46])
that uniquely selects the wavelength. In particular, a solution
A = R(X)eiθ(X) must conserve the “angular momentum”
h(X) = R2(X)dθ/dX. If R(X) = 0 for any X, then h(X) = 0
for all X. Thus, at any point at which R(X) is nonzero,
dθ/dX = 0 must hold, leading to a spatially homogeneous
Turing region. By this conservation law, for any solution
to (2.1) such that (2.1a) reaches a steady state, if there exists
a region in space such that (|A|,|C|) = (0,C0), regions for
which |C| = 0 may only admit the spatially homogeneous
A = A0 state. Indeed, when time evolving (2.1) initialized
with A spatially periodic in the C = 0 region, a coarsening
of the Turing state occurs until the region is spatially
homogeneous. This wavelength selection within the amplitude
equations may explain the observation in Sec. III D that the
wavelength λ of the striped region is closer to the critical
value λc the closer (B,D) are to (BH,Dc), their values at the
C2THP.

The front solution to (2.1) shown in Fig. 17(a) only
exists on a positively sloped line in (μ,ρ) space through
the origin [dashed line in Fig. 18(a)], a codimension-one
subset in parameter space. The μ-ρ relationship was obtained
numerically by time evolving (2.1) for various μ and ρ

and observing pairs (μ,ρ) for which the Turing-Hopf front
remained stationary. The line shown in Fig. 18(a) is a least-
squares fit through the computed data points (empty circles).
We refer to this line as the Maxwell line, even though the
problem is not variational. The significance of the Maxwell
line is that the snaking region is expected to straddle the
Maxwell line, regardless of whether the system is variational.
Another nonvariational example can be found in [47], where
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FIG. 17. Shown in (a) is a plot of the stationary amplitudes of a Turing-Hopf solution of the amplitude equations. The Turing (Hopf)
amplitude is the solid (dashed) line. The widths of the Turing and Hopf regions are arbitrary. The parameters are μ = 25, ρ = 0.1682, and
E = 1.4. A closeup of the left front is shown in (b).
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FIG. 18. Figure (a) depicts the relationship between the numerically determined Maxwell line (dashed) and the limits of the pinning region
(solid circles). The dashed line is a least-squares fit through data points indicated by empty circles. The relationship between the Turing and
Hopf growth rates γ and ν on the Maxwell line is approximately linear, as can be seen from (a) along with the expressions for γ and ν in the
Appendix. Figure (b) is a semi-log plot of the width of the snaking region in D as a function of −(B − BH )−1. For B near BH , the width is
approximately exponential in −(B − BH )−1.

a higher order analytical approximation to the Maxwell curve
for stationary solutions of the (nonvariational) Lugiato-Lefever
model was calculated from a seventh order Ginzburg-Landau
equation near the codimension-two point corresponding to a
weakly subcritical Turing bifurcation. This curve was shown
to be straddled by a numerically determined snaking region
of [24].

Below the Maxwell line in Fig. 18(a), the Turing mode
becomes less dominant in relation to the Hopf mode, and the
Hopf mode invades the Turing mode. Above this line, the
opposite is true. By comparing the Turing and Hopf growth
rates γ and ν given in the Appendix, it is easily shown that
the ratio γ /ν decreases as D (or ρ) increases. Unlike the
full Brusselator model that has a codimension-zero snaking
region within the parameter space in which a continuum of
solutions exist, the Turing-Hopf solutions of the amplitude
equations only exist on a codimension-one subset. The reason
is that the amplitude equations do not capture the nonadiabatic
effects of (1.1) responsible for the pinning of periodic fronts
(see, e.g., [1,26,47] and references therein) or, equivalently, the
broadening of the Maxwell curve. The black dots in Fig. 18(a)
are computed limits of the snaking region for various values
of B for a domain length of L = 250. We observed that
the limits of the snaking region shift more to the left, i.e.,
closer to straddling the Maxwell line, the larger the value
of L. Comprehensive results for lengths significantly larger
than L = 250 were difficult to obtain due to computational
constraints. Aside from the length of the domain, another
reason for the slight discrepancy may be the lowest order
approximation of (1.1). In [47], it was shown that the weakly
nonlinear analysis must be carried out to higher orders for the
Maxwell curve to be straddled by the limits of the snaking
region near a codimension-two point. In Fig. 18(b), we show a
semi-log plot of the width of the snaking region in D for various
values of −(B − BH )−1. The dashed line is a least-squares fit
through the data points (empty circles). The linear relation
indicates that, near the C2THP, the width of the pinning region
in D is exponentially narrow in −(B − BH )−1, consistent
with the dominant part of the scaling analytically determined
in [10]. The predicted scaling in [10] also contains an algebraic

prefactor of the form (B − BH )−2 in our notation, but we were
unable to verify its presence based on the available data points.

IV. DISCUSSION

In this paper, we have extended the study of homoclinic
snaking of stationary pinning solutions to solutions exhibiting
time periodicity. Whereas most studies in the past have focused
on the subcritical Turing regime of variational models, we have
demonstrated snaking behavior near a C2THP of a nonvaria-
tional system where both the Turing and Hopf bifurcations
are supercritical. In the region of Turing-Hopf bistability,
we found multiple branches of solutions characterized by a
coexistence of temporal oscillations and stationary stripes. By
using AUTO to solve boundary value problems in time for the
Fourier amplitudes of the space-time solutions, we were able to
compute both stable and unstable solution branches. Two pairs
of branches were found. Each solution on one pair contained
a defect at the center of the striped region, while solutions on
the other pair did not. The solutions on either pair of branches
differ by a π phase shift in the spatially periodic pattern. We
found that these branches displayed a similar structure to those
found for stationary pinning solutions. Further similarities
discovered include the manner in which striped structures of
the space-time solutions were destroyed or nucleated when
traversing up or down the branches. The scaling of the speed
of the depinning transition with respect to distance from the
nearest saddle node was also found to be the same as that
observed in studies of stationary pinning solutions. Lastly,
within the framework of the amplitude equations valid near
the C2THP, we numerically determined a Maxwell line, and
showed that the pinning region was located nearby, with the
separation decreasing as the length of the domain increased.
There are, however, also important differences. The saddle
nodes of the snaking branches found did not monotonically
converge to a single value in the bifurcation parameter. Also,
instead of terminating on the pure Hopf branch the way that
stationary pinning branches terminate on the homogeneous
branches, the snaking branches found here connect to a pair of
collapsed snaking branches through a series of complex saddle
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nodes. Wavelength selection of the striped region along the
snaking branches is also different. In particular, wavelength
variation appears unrelated to the direction of depinning as
was the case in the Hamiltonian spatial dynamics of the
Swift-Hohenberg equations.

There are many open problems regarding Turing-Hopf
pinning solutions near the supercritical C2THP of the Brus-
selator model. A qualitative interpretation, analogous to the
spatial dynamics framework applied to the stationary pinning
solutions, would provide valuable insights into the nature of
the solutions found in this study. A quantitative determination
of the δ−1/2 scaling of the depinning time scale has also
not been attempted in this paper, due to the technical
difficulties associated with asymptotic expansions around
time-periodic pinning solutions. Other paths of analysis
include calculating the Maxwell point of the system of
amplitude equations, or extending the method of [10] to
analytically determine the pinning region. A higher order
system of amplitude equations may be derived to confirm
that the corresponding higher order Maxwell line compares
more favorably to the snaking region. The possibility of
Turing-Hopf pinning solutions in higher spatial dimensions
remains open for the Brusselator model, although Turing-Hopf
coexistence in two dimensions near a supercritical C2THP has
been numerically observed in [48] for a reaction-diffusion
system describing semiconductor heterostructures. Stationary
periodic Turing patterns in the two- and three-dimensional
Brusselator model with regular diffusion were numerically
computed in [49]. In [37], self-replicating localized spots
and spots resulting from ring instabilities were observed
numerically for the two-dimensional Brusselator model with
superdiffusion. Stationary pinning solutions in higher spatial
dimensions whose analogs could exist near a supercritical
C2THP include radially symmetric (quasi-one-dimensional)
pinning solutions in the multidimensional Swift-Hohenberg
equation [50], and fully two-dimensional pinning solutions in
two-dimensional Swift-Hohenberg equations [51,52].

Finally, we mention several possible extensions of this
study. First, the numerical continuation method based on
spatial Fourier transform can be readily adapted to compute the
bifurcation diagrams of Turing-Hopf pinning solutions found
by time evolution for the superdiffusive Brusselator model
in [32]. However, the interpretation of pinning in terms of

spatial dynamics might not be possible in this case. Second,
the bifurcation structures of Turing-Hopf pinning solutions can
become drastically different sufficiently far from the supercriti-
cal C2THP, when the snaking region interacts with bifurcations
on either Turing or Hopf. In [40], it was shown that interaction
of the snaking region with a saddle-center bifurcation on the
spatially periodic state results in the primary and hybrid snakes
reconnecting into a stack of figure-8 isolas. For the Turing-
Hopf pinning branches, this type of reconnection is expected
when the snaking region interacts with an Eckhaus bifurcation
on the pure Turing branch. On the other hand, it is also possible
for the Turing-Hopf snaking region to interact with many
other types of bifurcations, including for example mixed-mode
bifurcations and bifurcations of the Hopf periodic orbit in
the temporal ODE. Third, the effect of noise on Turing-Hopf
pinning solutions should be taken into account to facilitate
comparison between the results presented in this paper and
laboratory experiments. In [53], the dynamics of stationary
pinning solutions in the 3–5 Swift-Hohenberg equation with
an additive spatiotemporal Gaussian white noise was studied.
It was shown that in the pinning region, the front velocity is the
sum of a deterministic part which is the gradient of a sawtooth
potential, and a stochastic part which is a temporal Gaussian
white noise. In the absence of noise, the front is trapped (or
pinned) in the local minima of the sawtooth potential, but in
the presence of noise, the front moves (or depins) towards the
global minimum of the sawtooth potential asymptotically in
time. Hence, the additive noise causes the front to propagate in
a direction determined by the relative position to the Maxwell
point. We expect similar dynamics for Turing-Hopf pinning
solutions in view of the pinning region in the original PDE
straddling the Maxwell point in the amplitude equation much
like stationary pinning solutions, although in the Turing-Hopf
case such dynamics can not be readily interpreted in terms of
stochastic gradient flows because both PDEs are generically
nonvariational.
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APPENDIX: COEFFICIENTS OF AMPLITUDE EQUATIONS

The coefficients of the amplitude equations in (2.1) are as follows:
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μ, βr = 1

2

E2 + 2

1 + E2
, βi = 1

6

4 E4 − 7 E2 + 4

(1 + E2)E
,

δr = − (4 E6 − 33 E4
√

1 + E2 + 72 E4 − 94 E2
√

1 + E2 + 124 E2 − 56
√

1 + E2 + 56)E4

(14 E2 + 5 E4 − 10 E2
√

1 + E2 + 8 − 8
√

1 + E2)(
√

1 + E2 − 1)2(1 + E2)3/2
,

022908-19



TZOU, MA, BAYLISS, MATKOWSKY, AND VOLPERT PHYSICAL REVIEW E 87, 022908 (2013)

δi = E3(12 E6
√

1 + E2 − 44 E6 + 67 E4
√

1 + E2 − 94 E4 + 58 E2
√

1 + E2 − 58 E2 − 8 + 8
√

1 + E2)

(14 E2 + 5 E4 − 10 E2
√

1 + E2 + 8 − 8
√

1 + E2)(
√

1 + E2 − 1)2(1 + E2)3/2
,

κr = E2 + 1 − √
1 + E2

E2
, κi =

√
1 + E2 − 1

E
.
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