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Abstract

We consider the optimal covering of the unit square by N circles.
By optimal, we mean the covering that can be done with N circles of
minimum radius. Equivalently, we study the problem of the optimal
placement of N points such that the maximum over all locations in the
square of the distance of the location to the set of points is minimized.
We propose a new algorithm that can identify optimal coverings to
high precision. Numerical predictions of optimal coverings for N = 1
to 16 agree with the best known results in the literature. We use
the optimal designs in approximations to two novel, related problems
involving the optimal placement of curves.

1 Introduction

We consider in this work the problem of optimally distributing N
points inside a domain so that, when the Euclidean distance to the
nearest design point is computed for all locations on the domain, the
maximum of these distances is minimized. Equivalently, we seek to
distribute the N points in such a way that equal-radius circles centred
at these points required to cover the entire domain are as small as
possible. In this work, we call this the optimal covering problem.
We restrict our discussion to the unit square domain. We propose a
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numerical algorithm to identify optimal designs to high precision. The
use of these optimal designs in approximations to two related problems
involving the optimal placement of curves is also investigated.

The covering problem arises in statistical applications, and is dis-
cussed in [6]. Here, the idea is to identify N experiments that give
the best coverage of a two-dimensional parameter range. The prob-
lem also arises in the context of operations research in the optimal
placement of service centres [4, 1, 17] or wireless transmitters [7]. The
literature on the subject is disjoint and the current authors cannot
claim to have identified all relevant material. The first time this prob-
lem was considered was in [15] in which conjectured optimal coverings
of the square for N from one to ten were proposed based on numerical
computation. These stand as optimal coverings except for N = 6. In
this case, a small improvement was found [8]. Proofs for the optimal-
ity of some small N cases can be found in [5] with little subsequent
theoretical progress. Candidates for optimal coverings of the square
up to N = 30 based on numerical computation can be found in [11]
and for N = 31 to 100 in [16]. In this last article, references to other
covering problems (sphere surface by circles, triangles by circles, etc.)
can be found.

The related problem of circle packing has received much more at-
tention. Early proofs for optimal packing in a square with small num-
bers of circles can be found in [12]. Numerically computed candidates
for optimal solutions can be found in [10] for up to fifty circles in a
square. Candidates of optimal packings of up to several thousand cir-
cles are kept up to date on a web site [14]. It is known that for the
circle packing problem, free points (“rattlers”) can occur that can lie
anywhere within a certain region of the domain. This happens in the
square for seven circles, for example [12]. For our covering problem
in the square, we have not observed an optimal design that allows
any point to be moved while still preserving the optimality of the de-
sign. This has also been observed by others [15, 8, 11, 16] and we
conjecture that for the covering problem in the square, rattlers do not
occur. This influenced the numerical optimization strategy used in
this article and by others for this covering problem. In the current
work, a final numerical step involves a structure in which there are
segments of the minimal length that lock the design points into the
optimal configuration. For domains other than the square, the cover-
ing problem can have rattlers (consider the N = 2 covering problem
in a circular domain, for example). The methods in the literature and
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our own method can be extended to other domain shapes, but would
have difficulty with problems with rattlers.

In another related problem, the optimal covering does not minimize
the maximum distance of any location in the domain to the N points
but rather the average distance over all locations. This problem can
be considered easier than our covering problem since there is more
regularity. It is known that as N → ∞ optimal solutions lie on a
hexagonal lattice [9] in the domain interior. This result relies on the
fact that edge effects become negligible for large N when the average
is taken.

In the current work, we present an algorithm for computing can-
didate optimal covering designs in the more difficult case where the
maximum distance is minimized. The algorithm has two stages. In the
first stage, the N points are placed randomly and moved heuristically
towards an optimal candidate. Then, a Newton iteration is used to
compute optimal locations to near machine precision. Our algorithm
is described in more detail below. This iterative refinement idea is
different from other approaches in the literature. In [15] the equiva-
lent to our second stage of the algorithm used a mechanical analogy
to shrinking, tensioned bars with frictionless pin joints to obtain high
accuracy solutions. This was also the second stage strategy used in
[11]. In that work, the first stage to identify approximate candidates
was not done with a heuristic search but rather an optimization proce-
dure to move the points to reduce the area not covered by the current
design. In [16] a similar optimization idea is used without a second
stage. For both these competitive algorithms, the iterative second
stage we propose could be used to improve final convergence to high
accuracy solutions.

The motivating problem for the authors is more difficult. It is
to find a simple curve C in a given simply connected and bounded
domain. The curve has given length and given starting and ending
points and is such that the maximum distance of the curve to any
point in the domain is minimized over the set of all such curves. It is
not known whether this problem has well defined minimizers and there
may be a high degree of degeneracy in locally optimal curves. It arises
in the hydrogen fuel cell application, in the design of reactant gas flow
channels [13]. Here, the starting and ending points are the channel
inlet and outlet port locations. The channel should be laid out to
supply reactant gas evenly to all parts of the fuel cell area, hence the
desire to minimize distance to the channel path C. In the case where
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the guarantee of maximum distance to C is critical but the exact value
of curve length is not, sub-optimal solutions of this problem can be
found by connecting optimal point coverings to start and end points
optimally. The resulting problem is the travelling salesman problem,
known to be NP hard but for which many heuristic solution methods
are known. A related problem is that of finding a connected network
of given length that optimally covers a domain. This removes the re-
quirement of given start and end locations and allows branch points
in the network. This problem has been studied in the context of op-
timal transportation networks [3]. Some numerical results for such
optimal networks in the square can be found in [2]. Here, the related
problem of optimizing average rather than maximum distance is stud-
ied. For the maximum distance case, sub-optimal solutions that can
guarantee a given maximal distance can be constructed by connecting
optimal N point coverings with a network of shortest length. This is
the Steiner tree problem, also known to be NP-hard but with many
effective heuristic algorithms.

In section 2 below, our two-stage algorithm for the optimal cov-
ering problem is described. Some results of the method are shown in
section 3. The use of the optimal covering points to find approximate
solutions to the optimal curve problems is discussed in section 4.

2 Optimal Covering Algorithm

The algorithm has two stages with iterations at each stage. We call
the N points Pj to be placed design points. At each iteration of the
first stage, the point Q in the domain that is farthest away from its
nearest design points is found. Then, design points nearest to Q are
moved towards it. In the second stage, an optimization problem is
solved with Newton iterations that can find design points to machine
precision. As with many optimization algorithms, the algorithm may
find a local minimum rather than the true optimum. It is therefore
intended that a set of solutions be computed from various random
starting configurations with enough trials that the optimal configu-
ration is included within this set. The number of such trials needed
generally increases with N .
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2.1 Computing δ

We define δ as the largest of the distances computed from every point
in the domain to the nearest design point(s). We also let the theoret-
ical minimum of δ be called δ∗ so that δ ≥ δ∗, with equality holding
only when the configuration is optimal. To compute δ for a partic-
ular arrangement of design points, we admit the following locations
in the domain as candidates for being one of the points Qi: the four
corners, centres of circles situated on the domain boundary passing
through two design points, and centres of circles situated strictly in-
side the domain passing through three design points. The centres of
the M circles with radii equal to the largest of all the radii are taken
as points Qi, i = 1, ...,M . Of course, to be an actual candidate, no
design points can be strictly inside the circle. It is fairly easy to see
that this finite set of possible Q does produce the largest distance δ
in the square to the set of design points.

At each step of the algorithm, the value of δ is calculated sys-
tematically checking the cases listed above, with the centre(s) of the
maximal circles denoted by Qi.

2.2 Stage 1: Decreasing δ By Moving Design
Points

Once the locations of Qi have been identified, the next step might
be to move at least one of the nearest design points toward them by
a specified step size h, thereby possibly decreasing δ. However, this
method performed poorly, especially for larger N . The reason for this
may be that this method is more of a local search, converging only
to the “nearest minimum,” a suboptimal configuration for which no
design point can be moved locally without increasing δ. In general,
the more design points there are, the more local minima.

To promote a wider search and avoid local minima, we instead
admit for points Qi the centres of all circles that have radius within
a given tolerance (proportional to the step length h) of δ. We also
set the step size relatively large at the start and decrease it gradually.
The result is that more design points are moved farther from their
original locations. Note that this combination of characteristics does
not guarantee a decrease in δ from one step to the next, and so while
the algorithm favours downhill moves, uphill transitions are allowed.
The following steps summarizes the first stage (the coarse search por-
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tion) of the algorithm, starting with a relatively large initial step
length h:

1. Compute δ.

2. Make a list of all candidates for δ that are within a predetermined
tolerance of δ (the tolerance proportional to the step length).

3. Of this set of circles, move every design point on the boundary
of a circle towards the centre. The magnitude of the move is h.

• if one design point at Pj lies on the boundary of M > 1
circles of candidate radii δi within tolerance centred at Qi,
i = 1, 2, . . . ,M , the direction in which to move point j is
computed as

~vj =
M∑
i=1

δi(Qi − Pj),

so that directions associated with larger distances are weighted
more heavily. For a step size of h, the resulting position of
point j would be P ′

j = Pj + h
~vj

|~vj | .

4. Ensure all design points are still inside the square - if not, de-
crease the step size by a factor of two and move all points in the
same direction. Repeat this step until all points are inside the
square and reset the step size to its previous value.

5. Repeat steps 1 through 4 until the value of δ begins to oscillate
about a mean value for a predetermined number of times

6. Decrease step size by a geometric factor, and return to step 1.
Once the step size has been decreased to a predetermined value,
end stage 1.

2.3 Stage 2: High Precision Solutions

The above describes an algorithm that is capable of finding the vicin-
ity of an optimal configuration, but is incapable of locating it to high
precision. We proceed on the assumption that, when the configuration
is optimal (or even just locally optimal), there are enough maximal
locations in the domain for which the nearest design point is the same
distance δ (δ∗ if optimal) away that the design point positions are
fixed. As mentioned in the introduction, this idea relies on the conjec-
ture that no rattlers appear in the optimal covering problem for the
square.
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This assumption allows for a more algebraic minimization. We
seek to make all the links ~c from circle centres Q to any design points
P on its circle’s edge to be of equal length (the optimal δ∗ if the
coarse algorithm result is close enough to the optimal configuration).
Variables in the optimization are the coordinates of the circle centres
Q, the coordinates of the design points P , and δ. Since the number
of links is usually different from the number of variables, a straight
solve in the manner of equal number of equations and unknowns is
not possible in general. We instead minimize, over the space of all
variables, the following function for the case of K links:

Ha =
K∑

i=1

(
||P −Q||2i − δ2

)2
+ aδ2. (1)

We make two notes here about Eq. 1. First, the subscript i indexes
the ith link, between a design point P and circle centre (maximal dis-
tance point) Q. Second, the last term aδ2 is included to ensure that
we are in fact, by minimizing Ha, converging to a configuration for
which δ is a minimum. It also serves to prevent a singular Hessian
matrix during the Newton iteration for the minimization of Ha (solv-
ing of ∇Ha = 0) when there are fewer links than unknowns. We have
found that a should start out roughly on the order of the final step
size employed in the coarse search algorithm, and then be decreased
during the Newton iteration.

A graphical depiction of the method can be seen from the con-
verged N = 2 optimal solution shown in figure 1. Here, there are
K = 8 links, shown as dashed lines. The function Ha is minimized
as a → 0 over 6 unknowns: four for the coordinates of the two de-
sign points P and two more for the single coordinates of the two edge
maximal distance points Q. The four corners are also maximal dis-
tance points Q but are fixed, not variables. During the course of the
optimization, the structure of the problem can vary (a corner Q mov-
ing along an edge for example). The algorithm tracks these changes
automatically.

For this procedure to converge to the optimal solution, it is im-
perative that the coarse algorithm identifies the “correct links” to set
to equal lengths. The lengths of all the correct links must be longer
than those of the extraneous links. To achieve this, the final step
size hf used in the coarse search must be small enough. Once that
is arranged, the task then is to separate the correct links from the
extraneous ones. This is done as follows: we sort the L links (correct
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Figure 1: Optimal Configuration for N = 2 describing stage 2 of the algo-
rithm.

plus extraneous) according to their lengths so that δi < δj for i < j
and compute Ri = δmax−δi

hf
. If the optimal configuration has K correct

links, RL−K −RL−K+1 is significantly larger than all other differences
between adjacent values of R. As part of the algorithm, we have a
threshholding technique to identify K. As mentioned above, the two
stage method must be run starting from a sample of random initial
conditions to be able to find optimal solutions. Past small N , there is
no proof of optimality of the results.

The iterations of this second stage can fail to converge or lead
to a local but not globally optimal solution. Convergence failure is
normally due to an incorrect identification of the links used in the
Newton step. This identification becomes increasingly difficult as N
increases and the algorithm as a whole is suitable only for moderate N .
However, if the links are correctly identified, the Newton procedure
is robust and finds potentially optimal solutions quickly and to high
accuracy. Thus, we believe our Newton approach is the strongest
contribution of this work and can be combined with other stage 1
strategies.
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3 Results for various N

We present some of our results for various N in figure 2. Circles
centred around each design point have a radius δ, and the dashed
lines represent the links in the stage 2 process. Our results for N
= 2–5 and 7 are proven optimal [5]. The N = 6 has a close nearly
optimum solution that is often found by the algorithm, first reported
in [15]. The optimal case was first seen in [8]. It can be seen that as
N increases, the optimal configurations near the boundaries become
very subtle.

4 Related Problems

We proceed to the two curve optimization problems discussed in the
Introduction. Recall that the motivating problem is: given a closed
and bounded domain Ω (the unit square in our computations) find a
curve C of given length L in Ω such that

δ = max
x∈Ω

dist(x, C)

is minimized with one of two additional conditions:

A: C is a simple curve beginning at given point x0 (inlet) and ending
at given point x1 (outlet).

B: C is connected.

One could also consider the “inverse problem” of finding a curve C
with a given value of δ of smallest length. We provide sub-optimal
solutions to these problems based on the N = 16 solution shown in
figure 2. By sub-optimal, we mean curves that have a value δ below
a given tolerance (from application criteria) but may not have the
smallest length that can achieve that tolerance. Taking the inlet to
be the lower left hand corner and the outlet to be the upper right for
condition A above, we compute the travelling salesman problem to
find the curve of minimum length between the points. This curve is
guaranteed to be no more than a distance δ = 0.169427051598 from
every point in the domain by the property of the N = 16 interior
points. However, it is not the simple, continuous curve of the smallest
length that has this property. Also shown is the heuristic solution to
the connected curve (allowing branches) with this property (condition
B above). This is found by applying a heuristic Steiner algorithm to
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Figure 2: Optimal configurations for N = 3, 5, 6, and 16 points. The config-
urations for 6 and 16 points are the best reported but not proven optimal.
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Figure 3: Curves with δ = 0.169427051598 for the simple curve problem
(left) with the inlet at lower left and outlet upper right; for the connected
network (right). These curves have a guaranteed δ but sub-optimal length.

the configuration for N = 16 design points. This curve network is also
guaranteed to be no more than a distance δ = 0.169427051598 from
every point in the domain. We do not claim that this is the curve with
this property that has the shortest length. However, it is known that
such optimal curves in the average distance problem can have branch
points that must occur at Steiner angles [2, 3].

5 Summary

We present a new algorithm for finding optimal covering points. It
has an optimization second stage with a carefully constructed objec-
tive function that can find optimal designs to machine precision. Our
second stage could be used in other methods that have heuristics that
tend to approximate optimal configurations. The optimal designs are
used to find approximate solutions to two related optimal curve prob-
lems, one of which is of interest to an aspect of hydrogen fuel cell
design.
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