MATH 2120 - Practice Final

- Duration: 3 hours.
- A table of Laplace transforms is included as the final page.
- Use of notes or calculators is not allowed.
- Show all your work and write legibly.
- No credit will be given for memorized answers.
- Only work done in the exam booklet will be graded - if you run out of room, please ask for another and write your name on both booklets. Work done outside of the booklet will not be graded - you must show all work in the booklet to receive full credit.
- If $y_{1}(x)$ and $y_{2}(x)$ are two linearly independent solutions of the homogeneous equation $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$, then a particular solution $y_{p}(x)$ of the nonhomogeneous equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g(x),
$$

is

$$
y_{p}(x)=c_{1}(x) y_{1}(x)+c_{2}(x) y_{2}(x)
$$

where

$$
c_{1}(x)=-\int \frac{y_{2}(x) g(x)}{W\left(x ; y_{1}, y_{2}\right)} d x, \quad c_{2}(x)=\int \frac{y_{1}(x) g(x)}{W\left(x ; y_{1}, y_{2}\right)} d x ; \quad W\left(x ; y_{1}, y_{2}\right) \equiv y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}
$$

-

$$
\begin{gathered}
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots \\
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots \\
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \\
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots
\end{gathered}
$$

1. Consider the initial value problem

$$
\begin{equation*}
\frac{d y}{d t}+\frac{1}{t} y=\log t, \quad t>0, \quad y(1)=y_{0} \tag{1}
\end{equation*}
$$

(a) Solve (1).
(b) For what value of y_{0} does the solution behave qualitatively differently as $t \rightarrow 0^{+}$?
2. Find the general solution of

$$
\frac{1}{2} x^{2}(x-1) y^{\prime \prime}-x(x-2) y^{\prime}+(x-3) y=0
$$

given that $y=x^{2}$ is a solution.
3. Consider the initial value problem

$$
\begin{equation*}
\frac{d y}{d x}=\frac{3 x^{2}-6 x+4}{2(y-1)}, \quad y(2)=1-\sqrt{2} . \tag{2}
\end{equation*}
$$

(a) Find the unique solution of (2).
(b) On what interval in x does the solution exist? [To find zeros of a cubic, try, in this order, $0,1,-1,2,-2$. If none of those work, check your work. If all your work is correct, ask the examiner if there is a typo in the question.]
(c) What happens if the initial condition was instead $y(2)=1$? Explain.
4. Solve the initial value problem

$$
y^{\prime \prime}+y=\left\{\begin{array}{lr}
t, & 0 \leq t \leq \pi, \\
\pi e^{\pi-t}, & t>\pi,
\end{array} \quad y(0)=0, \quad y^{\prime}(0)=1\right.
$$

using Laplace transforms. Show that the solution is the same as that obtained by solving it piece-wise in Homework 4.
5. Consider the equation

$$
y^{\prime \prime}+y=f(t), \quad t>0, \quad y(0)=y^{\prime}(0)=0
$$

Show that the solution by means of the convolution theorem for Laplace transforms is identical to the one obtained using variation of parameters.
6. Use Laplace transforms to solve

$$
y^{\prime \prime}+\omega_{0}^{2} y=F_{0} \cos (2 t), \quad y(0)=1, \quad y^{\prime}(0)=0
$$

for all possible values of ω_{0}. The following may be useful:

$$
\mathcal{L}\{t \sin (k t)\}=\frac{2 s k}{\left(s^{2}+k^{2}\right)^{2}}, \quad \mathcal{L}\{t \cos (k t)\}=\frac{s^{2}-k^{2}}{\left(s^{2}+k^{2}\right)^{2}}
$$

7. Consider the initial value problem

$$
y^{\prime \prime}+4 y=\left\{\begin{array}{lr}
0, & 0 \leq t<5 \tag{3}\\
\frac{t-5}{5}, & 5 \leq t<10 \\
1, & t>10
\end{array} \quad y(0)=0, \quad y^{\prime}(0)=0\right.
$$

(a) Sketch the forcing function.
(b) Solve (3).
(c) Explain the behaviour of the solution on $(0,5),(5,10)$ and $(10, \infty)$ in terms of the behaviour of the forcing function. About what mean value does the solution oscillate when $t>10$?
8. Solve

$$
x^{\prime \prime}+x=\delta(t-2 \pi), \quad x(0)=\alpha, \quad x^{\prime}(0)=\beta
$$

both with and without using Laplace transforms. Check to see that your answers agree.
9. Explain why $y=(\cos t-1) / t^{3}$ does not have a Laplace transform, but $y=(\cos t-1) / t^{2}$ does. Compute the Laplace transform of $y=(\cos t-1) / t$.
10. Consider the system of equations

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{cc}
2 & 1 \tag{4}\\
6 & -3
\end{array}\right)\binom{x}{y}
$$

(a) Find the general solution of (4) and draw a few trajectories in the phase $(x-y)$ plane.
(b) If $x(0)=5$ and $y(0)=-2$, what value does the ratio y / x approach as $t \rightarrow \infty$? Note, you do not have to solve for any constants - a simple explanation may suffice. You may also solve for the constants if you wish.
(c) On what line in the $x-y$ plane should one set the initial conditions so that $x \rightarrow 0$ and $y \rightarrow 0$ as $t \rightarrow \infty$?
11. Write the second order equation

$$
y^{\prime \prime}+9 y=0, \quad y(0)=\alpha, \quad y^{\prime}(0)=\beta
$$

as a system of two first order equations. Solve the resulting system.

