MATH 2120 - Homework 2 (due Tuesday October 7, 2014 before class)

1. [OPTIONAL] Stability of equilibrium solutions: for first order autonomous equations, which have the form

$$
\begin{equation*}
\frac{d y}{d t}=f(y) \tag{1}
\end{equation*}
$$

stability of equilibrium solutions is of interest. A solution $y=y_{0}$ is an equilibrium solution if $f\left(y_{0}\right)=0$, since then $d y / d t=0$. Here, y_{0} is a constant. An equilibrium is stable if small perturbations away from it decay as time increases so that the solution returns to the equilibrium. It is unstable if small perturbations grow in time so that the solution evolves away from the equilibrium. That is, if we let

$$
\begin{equation*}
y=y_{0}+\delta(t) \tag{2}
\end{equation*}
$$

with $|\delta(0)| \ll 1$ being the initial perturbation, y_{0} is a stable equilibrium if $\delta(t)$ decreases in time, and unstable if $\delta(t)$ increases in time. Substitute (2) into (1) and use Taylor series to obtain a linear ODE for $\delta(t)$. Show that y_{0} is a stable equilibrium if $f^{\prime}\left(y_{0}\right)<0$ and unstable if $f^{\prime}\left(y_{0}\right)>0$. Use this result to determine the stability of the two equilibria of the logistic growth equation where $f(y)=y(1-y)$.
2. Section 1.6 (p. 72): \#1, \#2, \#3, \#10, \#11. For these questions, DO NOT SOLVE the ODE. Simply make the substitution $v(x)=y(x) / x$ and obtain a separable equation for $v(x)$.
3. Find the general solution of

$$
\frac{d y}{d x}-\frac{3}{4 x} y=x^{4} y^{1 / 3}
$$

4. (a) Use Euler's formula $e^{i \theta}=\cos \theta+i \sin \theta$ to show the identity

$$
\sin (a+b)=\sin a \cos b+\sin b \cos a
$$

(a similar identity can be derived for $\cos (a+b)$ using the same approach).
(b) Use Euler's formula to show the identity

$$
\sin ^{3} t=\frac{1}{4}(3 \sin t-\sin 3 t)
$$

(a similar identity can be derived for $\cos ^{3} t$).
(c) Use Euler's formula to show that

$$
\frac{d}{d x} \cos m x=-m \sin m x
$$

and

$$
\frac{d}{d x} \sin m x=m \cos m x
$$

(d) Definition of $\arcsin x$: If

$$
\begin{equation*}
\sin \theta=x \tag{3}
\end{equation*}
$$

then $\theta=\arcsin x$. So if we can solve for θ, we would know what the arcsine function actually is. To do so, use Euler's formula to write $\sin \theta$ in (3) in terms of complex exponentials. Then define $w=e^{i \theta}$ so that $e^{-i \theta}=1 / w$. Solve the resulting equation for w (it will be a quadratic equation). Then solve for θ. The positive and negative branches of the square root correspond to two different possible values of θ. For example, if $\sin \theta=1 / \sqrt{2}$, then two possible values of θ are $\theta=\pi / 4$ and $\theta=3 \pi / 4$. Notice also that any integer multiple of 2π can be added to θ; this reflects the multi-valued nature of the logarithmic function.
(e) Use the definitions $\cosh x \equiv\left(e^{x}+e^{-x}\right) / 2$ and $\sinh x \equiv\left(e^{x}-e^{-x}\right) / 2$ to show that

$$
\frac{d}{d x} \cosh m x=m \sinh m x
$$

and

$$
\frac{d}{d x} \sinh m x=m \cosh m x
$$

(f) Show that $\cosh ^{2} m x-\sinh ^{2} m x=1$ for any x.
5. Consider the IVP

$$
\begin{equation*}
y^{\prime \prime}-9 y=0 ; \quad y(0)=\alpha, \quad y^{\prime}(0)=\beta \tag{4}
\end{equation*}
$$

(a) Write the general solution as $y=c_{1} e^{3 t}+c_{2} e^{-3 t}$ and solve for c_{1} and c_{2} using the initial conditions.
(b) Write the general solution as $y=a_{1} \cosh 3 t+a_{2} \sinh 3 t$ and solve for a_{1} and a_{2} using the initial conditions. Show that your solutions in parts (a) and (b) are equivalent. Which way made the algebra simpler?
(c) If the initial conditions were instead $y\left(t_{0}\right)=\alpha$ and $y^{\prime}\left(t_{0}\right)=\beta$, what would you do to simplify the algebra?
6. Solve the IVP

$$
y^{\prime \prime}+5 y=0 ; \quad y(2)=\alpha, \quad y^{\prime}(2)=\beta
$$

7. Solve the IVP

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0 ; \quad y(0)=1, \quad y^{\prime}(0)=0
$$

8. Consider the "equidimensional" equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}+a x y^{\prime}+b y=0 . \tag{5}
\end{equation*}
$$

For $a=-3$, and $b=3$, show that $y_{1}=x$ is a solution of (5). Use reduction of order to find the other linearly independent solution y_{2}. For $x \neq 0$, show that the Wronskian $W\left(y_{1}, y_{2}\right)$ is nonzero.

