MATH 2120 - Homework 3 (due Thursday October 16, 2014 before class)

1. Alternate way of obtaining the second solution in the case of repeated roots. Consider the second order linear constant coefficient equation

$$
\begin{equation*}
y^{\prime \prime}+2 a y^{\prime}+a^{2} y=0 \tag{1}
\end{equation*}
$$

(a) Show that the corresponding characteristic equation has repeated roots $r_{1}=r_{2}=-a$ so that $y_{1}=e^{-a t}$ is a solution of (1).
(b) Use Abel's formula to show that the Wronskian $W\left(y_{1}, y_{2} ; t\right)$ of any two solutions of (1) is $W=c_{1} e^{-2 a t}$.
(c) Letting $y_{1}=e^{-a t}$, use the result from part (b) to derive a differential equation for y_{2}. Solve this equation to show that $y_{2}=t e^{-a t}$.
2. Another way of obtaining the second solution in the case of repeated roots. For the ODE $a y^{\prime \prime}+b y^{\prime}+c y=0$, suppose that r_{1} and r_{2} are two distinct roots of the corresponding characteristic equation. Thus, $y_{1}=e^{r_{1} t}$ is one solution. The other (linearly independent) solution can be written as

$$
\begin{equation*}
y_{2}=\frac{e^{r_{2} t}-e^{r_{1} t}}{r_{2}-r_{1}} . \tag{2}
\end{equation*}
$$

Now let $r_{2}=r_{1}+\varepsilon$ in (2). Show that $\lim _{\varepsilon \rightarrow 0} y_{2}=t e^{r_{1} t}$. That is, as the two roots coalesce into a repeated root, the second solution approaches $t e^{r_{1} t}$.
3. Section 2.2 (p.124): \#41, \#43.
4. Section 2.3 (p.134): \#22, \#27, \#29*.

* You can use the method from class for finding roots of unity if you like - it is much faster

5. Solve the differential equation

$$
\frac{d^{2} x}{d t^{2}}+4 x=0
$$

for the following initial conditions, and write in phase-amplitude form $x(t)=C \cos (\omega t-\alpha)$ for constants C, ω, and α :
(a) $x(0)=1, \quad x^{\prime}(0)=-2$
(b) $x(0)=-1 / 2, \quad x^{\prime}(0)=\sqrt{3}$
(c) $x(0)=1 / 2, \quad x^{\prime}(0)=\sqrt{3}$
(d) $x(0)=-1, \quad x^{\prime}(0)=-2$
6. Section 2.4 (p.147): \# 17.

