MATH 2120 - Homework 4 (due Thursday October 23, 2014 before class)

1. Section 2.5 (p.161) \#4, \#5, \#8, \#16*, \#21, \#23, \#25
[Hint for \#5: show using Euler's formula that $\sin ^{2} x=(1-\cos (2 x)) / 2$.]

* Only write down the general form of the particular solution; do not solve for the constants.

2. Use the method of undetermined coefficients to solve the initial value problem

$$
y^{\prime \prime}+y=\left\{\begin{array}{lr}
t, & 0 \leq t \leq \pi, \\
\pi e^{\pi-t}, & t>\pi
\end{array} \quad y(0)=0, \quad y^{\prime}(0)=1\right.
$$

Note that $e^{\pi-t}=e^{\pi} e^{-t}$. Your solution should be of the form

$$
y(t)=\left\{\begin{array}{lr}
y_{l}(t), & 0 \leq t \leq \pi \\
y_{r}(t), & t>\pi
\end{array}\right.
$$

To find $y_{l}(t)$, solve $y^{\prime \prime}+y=t$ with $y(0)=0$ and $y^{\prime}(0)=1$. Remember to apply the initial conditions only after having found the full general solution, which includes the particular solution. To find $y_{r}(t)$, first find the general solution of $y^{\prime \prime}+y=\pi e^{\pi-t}$. To determine the two unknown constants, apply continuity of y and y^{\prime} at $t=\pi$. That is, $y_{r}(\pi)=y_{l}(\pi)$ and $y_{r}^{\prime}(\pi)=y_{l}^{\prime}(\pi)$. You can think about why y and y^{\prime} must be continuous.
3. Variation of parameters states that the particular solution of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)$ is given by

$$
\begin{equation*}
y_{p}(t)=y_{1}(t) \int \frac{-y_{2}(t) f(t)}{W\left(y_{1}, y_{2} ; t\right)} d t+y_{2}(t) \int \frac{y_{1}(t) f(t)}{W\left(y_{1}, y_{2} ; t\right)} d t \tag{1}
\end{equation*}
$$

where $W\left(t ; y_{1}, y_{2}\right)$ is the Wronskian of the two linearly independent homogeneous solutions $y_{1}(t)$ and $y_{2}(t)$. Use result (1) to find the particular solution of

$$
y^{\prime \prime}+y=\sin t
$$

Be sure to identify any homogeneous terms that may appear in your expression for the particular solution. Verify your answer using the method of undetermined coefficients. [I will give you (1) on exams, but please make an effort to learn the derivation, as derivations are in general good things to understand.]

