MATH 2120 - Homework 5 (due Thursday November 13, 2014 before class)

Note: For all problems, I suggest using the transform table on the front inside cover of your textbook, as that is what you will have for exams.

1. Section 4.1 (p. 275) \#1, \#3, \#6, \#10; please compute the answer using the integral definition of the Laplace transform.
2. Section 4.1 (p.276) \#23, \#25, \#29, \#31.
3. Section 4.2 (p. 287) \#2, \#4, \#8, \#11.
4. Section 4.3 (p. 296) \#3, \#4, \#6.
5. Consider the Volterra integral equation

$$
\begin{equation*}
\phi(t)+\int_{0}^{t}(t-\xi) \phi(\xi) d \xi=\sin (2 t) \tag{1}
\end{equation*}
$$

(a) Show that if $u^{\prime \prime}(t)=\phi(t)$, then

$$
\begin{equation*}
u^{\prime \prime}+u-t u^{\prime}(0)-u(0)=\sin (2 t) . \tag{2}
\end{equation*}
$$

(b) Explain why we may take $u(0)=u^{\prime}(0)=0$ in (2) without loss of generality if we are only interested in $\phi(t)$. Then solve (2) with these initial conditions.
(c) Solve (1) by using the Laplace transform. Verify your answer by comparing with part (b).

