MATH 2120 - Homework 6 (due Thursday November 27, 2014 before class)

1. Section 4.4 (p.304) \#10, \#21. For \#21, explain why the Laplace transform exists (important point).
2. Section 4.5 (p.314) \#4, \#21.
3. Section 4.6 (p.324) \#21(b), \#22.
4. Section 5.1 (p.335) \#2.
5. Section 5.4 (p.378) \#4, \#6, \#8, \#11. Please draw the phase portraits by hand.
6. Consider the initial value problem

$$
\begin{equation*}
x^{\prime \prime}+x=[u(t-2 \pi)-u(t-4 \pi)] \sin t \equiv f(t), \quad x(0)=0, \quad x^{\prime}(0)=0 \tag{1}
\end{equation*}
$$

where $u(t-a)$ is the Heaviside step function, taking on the value of 0 when $t<a$ and 1 when $t \geq a$.
(a) Find the Laplace transform of $f(t)=[u(t-2 \pi)-u(t-4 \pi)] \sin t$. The following may be useful:

$$
\sin (k t-n \pi)=(-1)^{n} \sin (k t), \quad \cos (k t-n \pi)=(-1)^{n} \cos (k t) .
$$

(b) Solve (1) using Laplace transforms. The following may be useful:

$$
\mathcal{L}\left\{\frac{1}{2 k^{3}}(\sin (k t)-k t \cos (k t))\right\}=\frac{1}{\left(s^{2}+k^{2}\right)^{2}}
$$

(c) Briefly explain the behavior of the solution in each of the three relevant time intervals in relation to the forcing function $f(t)$ (and initial conditions, if applicable). Is there resonance? If so, does the amplitude of oscillations approach ∞ as $t \rightarrow \infty$? Why or why not?
(d) What is the amplitude of oscillations for $t>4 \pi$?

