MATH 2120 - Midterm October 30, 2014

- Duration: 80 minutes.
- This exam has 6 questions; do 5 of the questions. Each is worth 10 points.
- If you do all 6 questions, indicate on the front of your exam booklet which 5 questions you would like to be graded.
- Use of notes or calculators is not allowed.
- Show all your work and write legibly.
- Only work done in the exam booklet will be graded - if you run out of room, please ask for another and write your name on both booklets.

1. Consider the initial value problem

$$
\begin{equation*}
t y^{\prime}+(t+1) y=2 t e^{-t}, \quad y(1)=a \tag{1}
\end{equation*}
$$

Here, a is a real parameter that can take on any value.
(a) Write (1) in standard form.
(b) Compute the integrating factor. No derivation is required.
(c) Solve (1).
(d) There exists a value $a=a_{0}$ for which $a<a_{0}$ and $a>a_{0}$ produce qualitatively different behaviors as $t \rightarrow 0$. Determine the value of a_{0}.
(e) Determine the corresponding behavior of y as $t \rightarrow 0$ when $a<a_{0}, a=a_{0}$, and $a>a_{0}$.
2. Consider the first order differential equation

$$
\begin{equation*}
\frac{d y}{d x}=\frac{e^{x}}{2(y-1)}, \quad y(1)=0 \tag{2}
\end{equation*}
$$

(a) Disregarding the initial condition, find an implicit general solution of (2).
(b) Find the unique explicit solution of (2) that satisfies the initial condition.
(c) For what range of x does the solution in (b) exist?
(d) Suppose the initial condition is taken instead to be $y\left(x_{0}\right)=y_{0}$. For what pair(s) $\left(x_{0}, y_{0}\right)$ would the solution then be non-unique?
3. For the linear second order equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

show that the Wronskian $W\left(y_{1}, y_{2} ; t\right)=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}$ of two solutions $y_{1}(t)$ and $y_{2}(t)$ is either always zero or never zero. Here, assume that $p(t)$ and $q(t)$ are continuous and differentiable for all t. Show all steps of the derivation of the ODE for W. No points will be given for a memorized answer.
4. Solve the initial value problem

$$
y^{\prime \prime}-4 y^{\prime}+5 y=0, \quad y(4)=0, \quad y^{\prime}(4)=\beta
$$

where the primes denote differentiation with respect to the independent variable t. Here, β is a parameter that can take on all real values. Justify all steps.
5. Consider the initial value problem

$$
y^{\prime \prime}+9 y=\left\{\begin{array}{lr}
9(t-1), & 0 \leq t \leq 1 \\
\log t, & t>1
\end{array} \quad y(0)=1, \quad y^{\prime}(0)=0\right.
$$

The solution for $y(t)$ may be written as

$$
y(t)=\left\{\begin{array}{lr}
y_{l}(t), & 0 \leq t \leq 1 \\
y_{r}(t), & t>1
\end{array}\right.
$$

(a) Write the ODE and initial conditions (actual explicit values) for $y_{r}(t)$ so that the solution y is continuous and differentiable for all $t>0$ (i.e., y and y^{\prime} are continuous everywhere). State the method you would use to solve the resulting equation for $y_{r}(t)$, but do not solve it.
(b) Is $y^{\prime \prime}$ continuous? Explain.
6. Write the form of the particular solution for the following nonhomogeneous equations. All primes denote differentiation with respect to t, and $i=\sqrt{-1}$. Do not solve for the coefficients.
(a) $y^{\prime \prime}-(1+i) y^{\prime}+i y=t \sin t$
(b) $y^{\prime \prime}-y=t e^{t} \cosh t$

