MATH 2120 - Midterm 2 November 14, 2013

- Duration: 80 minutes.
- A table of Laplace transforms is included as the final page.
- This exam has 4 questions. Each is worth 10 points.
- Question 5 is a bonus question worth 6 points. Part marks will be given.
- Use of notes or calculators is not allowed.
- Show all your work and write legibly.
- No credit will be given for memorized answers.
- Only work done in the exam booklet will be graded - if you run out of room, please ask for another and write your name on both booklets.
- Laplace transform of $f(t)$:

$$
\mathcal{L}\{f(t)\}=F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t .
$$

- Laplace transform of $f^{\prime}(t)$:

$$
\mathcal{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0) .
$$

- Laplace transform of $f^{\prime \prime}(t)$:

$$
\mathcal{L}\left\{f^{\prime \prime}(t)\right\}=s^{2} F(s)-s f(0)-f^{\prime}(0) .
$$

1. If $y_{1}(x)$ and $y_{2}(x)$ are two linearly independent solutions of the homogeneous equation $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$, then a particular solution $y_{p}(x)$ of the nonhomogeneous equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g(x),
$$

is

$$
\begin{equation*}
y_{p}(x)=c_{1}(x) y_{1}(x)+c_{2}(x) y_{2}(x) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{1}(x)=-\int \frac{y_{2}(x) g(x)}{W\left(x ; y_{1}, y_{2}\right)} d x, \quad c_{2}(x)=\int \frac{y_{1}(x) g(x)}{W\left(x ; y_{1}, y_{2}\right)} d x ; \quad W\left(x ; y_{1}, y_{2}\right) \equiv y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime} \tag{2}
\end{equation*}
$$

Use (1) and (2) to find a particular solution of equation

$$
\begin{equation*}
x y^{\prime \prime}+(5 x-1) y^{\prime}-5 y=x^{2} e^{-5 x}, \quad x>0 \tag{3}
\end{equation*}
$$

given that $y_{1}=5 x-1$ and $y_{2}=e^{-5 x}$ are two linearly independent solutions of the corresponding homogeneous equation. Identify any homogeneous terms (if any) that result from your calculations.
2. (a) Show that

$$
\mathcal{L}\left\{f^{\prime \prime}(t)\right\}=s^{2} F(s)-s f(0)-f^{\prime}(0),
$$

where $F(s)=\mathcal{L}\{f(t)\}$.
(b) Calculate the Laplace transform

$$
\begin{equation*}
\mathcal{L}\left\{\cos ^{2}(a t)\right\}=\int_{0}^{\infty} e^{-s t} \cos ^{2}(a t) d t \tag{4}
\end{equation*}
$$

by direct computation of the integral (or equivalent integrals). Do not use the Laplace transform table or any theorems and results from class. What restriction must be placed on s in order for the integral in (4) to converge? Explain.
3. Use the method of Laplace transforms to solve the initial value problem

$$
y^{\prime \prime}+6 y^{\prime}+13=e^{3 t}, \quad y(0)=0, \quad y^{\prime}(0)=0
$$

If you solve it without using Laplace transforms, you will receive a maximum of 5/10.
4. Use the method of Laplace transforms to solve the initial value problem

$$
y^{\prime \prime}+4 y=t, \quad y(0)=\alpha, \quad y^{\prime}(0)=\beta
$$

You will not receive credit for solving it without using Laplace transforms.

Optional Bonus Question (6 points)

5. (a) [2 pts] Derive $c_{1}(x)$ in (2).
(b) Consider the equation for a forced damped oscillator with mass $m=2$ and spring constant $k=3$,

$$
\begin{equation*}
2 x^{\prime \prime}+c x^{\prime}+3 x=\cos \omega t \tag{5}
\end{equation*}
$$

with some initial conditions.
i. [1 pt] For $c>0$, explain why, for large time, only the particular solution of (5) is relevant.
ii. [1 pt] The oscillation amplitude $C(\omega)$ of the particular solution is

$$
C(\omega)=\frac{1}{\sqrt{\left(3-2 \omega^{2}\right)^{2}+(c \omega)^{2}}}
$$

For what range of $c>0$ is there a practical resonance frequency $\omega=\omega_{\max }$? For that range of c, find $\omega_{\max }$.
iii. [1 pt] Now let $c=0$ and $x(0)=x^{\prime}(0)=0$ in (5). The full solution of (5) is then

$$
\begin{equation*}
x(t)=\frac{1}{2\left(\omega_{0}^{2}-\omega^{2}\right)}\left(\cos \omega t-\cos \omega_{0} t\right) \tag{6}
\end{equation*}
$$

where $\omega_{0}=\sqrt{3 / 2}$ is the natural frequency. For ω close to ω_{0}, use the identity

$$
2 \sin \alpha \sin \beta=\cos (\alpha-\beta)-\cos (\alpha+\beta)
$$

to write (6) in a form that indicates rapid oscillations within a slowly varying envelope. Identify which term corresponds to the slowly varying envelope, and which corresponds to rapid oscillations.
iv. [1 pt] For $c=0$, at what value of ω does $C(\omega)$ become unbounded? That is, what is the resonant frequency of (5) when $c=0$? Can $C(\omega)$ ever become unbounded when $c>0$? Explain.

Table of Laplace Transforms

This table summarizes the general properties of Laplace transforms and the Laplace transforms of particular functions derived in Chapter 4.

