MATH 2120 - Quiz 4 Thursday October 23, 2014

1. Find the particular solution of the equation

$$
y^{\prime \prime}+4 y=2 \sin ^{2} x
$$

2. Write down the form of the particular solution of the equation

$$
y^{\prime \prime}-7 y^{\prime}+10 y=x^{3} e^{5 x}+x^{2}
$$

Do not solve for the coefficients.
3. Variation of parameters states that the particular solution of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)$ is given by

$$
\begin{equation*}
y_{p}(t)=y_{1}(t) \int \frac{-y_{2}(t) f(t)}{W\left(y_{1}, y_{2} ; t\right)} d t+y_{2}(t) \int \frac{y_{1}(t) f(t)}{W\left(y_{1}, y_{2} ; t\right)} d t \tag{1}
\end{equation*}
$$

where $W\left(y_{1}, y_{2} ; t\right)$ is the Wronskian of the two linearly independent homogeneous solutions $y_{1}(t)$ and $y_{2}(t)$.
For the equation

$$
y^{\prime \prime}+9 y=\cos 3 t
$$

set up the two integrals in (1). Choose one to evaluate.

