Ranking and labeling in graphs:
Analysis of links and node attributes

Soumen Chakrabarti
IIT Bombay
http://www.cse.iitb.ac.in/~soumen
Course plan: Ranking (2 hours)

- Feature vectors
 - Basics of discriminative and max-margin ranking
- Nodes in a graph
 - HITS and Pagerank
 - Personalized Pagerank and variations
 - Maximum entropy flows
 - Learning edge conductance
Course plan: Labeling (1.5 hours)

- Feature vectors
 - Discriminative loss minimization
 - Probabilistic and conditional models
 - Structured prediction problems
- Nodes in a graph
 - Directed Bayesian models, relaxation labeling
 - Undirected models, some easy graphs
 - Inference using LP and QP relaxations
Ranking feature vectors

- Suppose $x \in X$ are instances and $\phi : X \rightarrow \mathbb{R}^d$ a feature vector generator.
- E.g., x may be a document and ϕ maps x to the “vector space model” with one axis for each word.
- The score of instance x is $\beta' \phi(x)$ where $\beta \in \mathbb{R}^d$ is a weight vector.
- For simplicity of notation assume x is already a feature vector and drop ϕ.
- We wish to learn β from training data \prec: “$i \prec j$” means the score of x_i should be less than the score of x_j, i.e.,

$$\beta' x_i \leq \beta' x_j$$
In practice, there may be no feasible \(\beta \) satisfying all preferences \(\preceq \).

For constraint \(i \prec j \), introduce slack variable \(s_{ij} \geq 0 \)

\[
\beta' x_i \leq \beta' x_j + s_{ij}
\]

Charge a penalty for using \(s_{ij} > 0 \)

\[
\min_{s_{ij} \geq 0; \beta} \sum_{i \prec j} s_{ij} \quad \text{subject to}
\]

\[
\beta' x_i \leq \beta' x_j + s_{ij} \quad \text{for all } i \prec j
\]
A max-margin formulation

- Achieve “confident” separation of loser and winner:

\[\beta' x_i + 1 \leq \beta' x_j + s_{ij} \]

- Problem: Can achieve this by scaling \(\beta \) arbitrarily; must be prevented by penalizing \(\| \beta \| \)

\[
\min_{s_{ij} \geq 0; \beta} \frac{1}{2} \beta' \beta + B \sum_{i < j} s_{ij} \quad \text{subject to} \quad \\
\beta' x_i + 1 \leq \beta' x_j + s_{ij} \quad \text{for all } i < j
\]

- \(B \) is a magic parameter that balances violations against model strength
Solving the optimization

- $\beta^t x_i + 1 \leq \beta^t x_j + s_{ij}$ and $s_{ij} \geq 0$ together mean $s_{ij} = \max\{0, \beta^t x_i - \beta^t x_j + 1\}$ ("hinge loss")

- The optimization can be rewritten without using s_{ij}

\[
\min_\beta \frac{1}{2} \beta^t \beta + B \sum_{i < j} \max\{0, \beta^t x_i - \beta^t x_j + 1\}
\]

- $\max\{0, t\}$ can be approximated by a number of smooth functions
 - e^t – growth at $t > 0$ too severe
 - $\log(1 + e^t)$ – much better, asymptotes to $y = 0$ as $t \to -\infty$ and to $y = t$ as $t \to \infty$
Approximating with smooth objective

- Simple unconstrained optimization, can be solved by Newton method

\[
\min_{\beta \in \mathbb{R}^d} \frac{1}{2} \beta' \beta + B \sum_{i \prec j} \log(1 + \exp(\beta' x_i - \beta' x_j + 1))
\]

- If $\beta' x_i - \beta' x_j + 1 \ll 0$, i.e., $\beta' x_i \ll \beta' x_j$, then pay little penalty

- If $\beta' x_i - \beta' x_j + 1 \gg 0$, i.e., $\beta' x_i \gg \beta' x_j$, then pay large penalty
Ranking nodes in graphs

- Instances no longer feature vectors sampled from some distribution
- Instances are (also) nodes in a graph
- Instance should score highly if high-scoring instances link to it
- Two instantiations of this intuition
 - **Hyperlink-induced topic search (HITS):** Nodes have two roles: hubs (fans) and authorities (celebrities)
 - **Pagerank:** Nodes have only one role: endorse other nodes
Quick HITS overview

Keyword query

Search engine

Root set

Expanded set

$u_1 \bullet$

$u_2 \bullet$

$u_3 \bullet$

v

$a(v) = h(u_1) + h(u_2) + h(u_3)$

$h(u) = a(v_1) + a(v_2) + a(v_3)$

$\vec{a} \leftarrow (1, \ldots, 1)^T, \vec{h} \leftarrow (1, \ldots, 1)^T$

while \vec{h} and \vec{a} change "significantly" do

$\vec{h} \leftarrow Ea$

$\ell_h \leftarrow \|\vec{h}\|_1 = \sum_w h[w]$

$h \leftarrow h/\ell_h$

$\vec{a} \leftarrow E^T h_0 = E^T E \vec{a}_0$

$\ell_a \leftarrow \|\vec{a}\|_1 = \sum_w a[w]$

$\vec{a} \leftarrow \vec{a}/\ell_a$

end while

- Authority flows along cocitation links, e.g., $v_1 \rightarrow u \rightarrow v_2$

- Note, hub (authority) scores are copied, not divided among authority (hub) nodes—important distinction from Pagerank and related approaches
Detour: Translation models

- Long-standing goal of Information Retrieval: return documents with words related to query words, without damaging precision

- Retrieval using language models: score document \(d \) wrt a query \(q \) (each interpreted as a set or multiset of words) by estimating \(\Pr(q|d) \),

- If \(q_i \) ranges over query words and \(w \) ranges over all words in the corpus vocabulary, we can write

\[
\Pr(q|d) = \prod_i \sum_w t(q_i|w) \Pr(w|d)
\]

assuming conditional independence between query words

- \(t(q_i|w) \) is the probability that a corpus \(w \) gets “translated” into query word \(q_i \) (e.g., \(q_i = \text{random} \) and \(w = \text{probability} \))
Word-document random walks

- Corpus as bipartite graph: word layer, document layer
- Document node d connects to word node w if w appears in d
- Random walk with absorption:
 1. Start the walk at node v initialized to w
 2. Repeat the following sub-steps: With probability $1 - \alpha$ terminate the walk at v, and with the remaining probability α execute these half-steps:
 2.1 From word node v, walk to a random document node d containing word v
 2.2 From document node d walk to a random word node $v' \in d$

 Now set $v \leftarrow v'$ and loop.
- Let there be m words and n documents
Word-document random walks II

- Starting with the m-node word layer, walking over to the n-node document layer can be expressed with a $m \times n$ matrix A, where $A_{wd} = \Pr(d|w)$
- Each row of A adds up to 1 by design
- Once we are at the document layer, the transition back to the word layer can be represented with a $n \times m$ matrix B, where $B_{dw} = \Pr(w|d)$
- Each row of B adds up to 1 by design
- In general $B \neq A'$
- The overall transition from words back to words is then represented by the matrix product $C = AB$, where C is $m \times m$
- Rows of C add up to one as well
Starting from word w, the probability that the process stops at word q after k steps is given by

$$(1 - \alpha)\alpha^k (C^k)_{wq}$$

where $(C^k)_{wq}$ is the (w, q)-entry of the matrix C^k.

Summing over all possible non-negative k, we get

$$t(q|w) = (1 - \alpha)(I + \alpha C + \cdots + \alpha^k C^k + \cdots)_{wq}$$

$$= (1 - \alpha)(I - \alpha C)^{-1}_{wq}$$

For $0 < \alpha < 1$, because rows of C add up to 1, $(I - \alpha C)^{-1}$ will always exist.

Parameter $\alpha \in (0, 1)$ controls the amount of diffusion.
Starting at given \(w \), top-scoring \(q_s \) make eminent sense

- Depends on corpus, naturally
Let $A \in \{0, 1\}^{m \times n}$ be a boolean matrix where A_{ij} is 1 if and only if word i ($1 \leq i \leq m$) occurs in document j ($1 \leq j \leq n$).

This time let $B = A'$.

Do not bother with walk absorption and the parameter α.

Start from a mix of all words instead of one word, i.e., initialize $x = \mathbb{1}/m$.

After transition to documents the weight vector over documents is xA.

After transition back to words the weight vector over words is xAA'.

$x, xAA', x(AA')A, x(AA')(AA'), x(AA')^2A, \ldots$
HITS-SVD connection II

- Power iterations, converging to dominant eigenvector of $C = AA'$; C is a symmetric $m \times m$ matrix
- C has m eigenvectors; stack them vertically to get $U = u_1, u_2, \ldots, u_m$
- C satisfies $U'C = \Lambda U'$, where Λ is a diagonal matrix with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_m \geq 0$
- Meanwhile suppose the SVD of A is $A_{m\times n} = U_{m\times m} \Sigma_{m\times n} V'_{n\times n}$ where $U'U = \mathbb{I}_{m\times m}$ and $V'V = \mathbb{I}_{n\times n}$
- $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_m)$ of singular values, with $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > \sigma_{r+1} = \cdots \sigma_m = 0$, for some $0 < r \leq m$
- $C = AA' = U\Sigma V'V\Sigma U' = U\Sigma \mathbb{I} \Sigma U' = U\Sigma^2 U'$,
 $\therefore CU = U\Sigma^2$, or $U'C = \Sigma^2 U'$
Topology sensitivity and winner takes all

(a) \[E = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \; \text{;} \; E^T E = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \]

(b) \[E = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \; \text{;} \; T E = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix} \]

- In (a, upper graph), \(a_2 \leftarrow 2a_2 + a_4 \) and \(a_4 \leftarrow a_2 + a_4 \)
- In (a, lower graph), \(a_2 \leftarrow 2a_2 + a_4 \), \(a_4 \leftarrow a_4 \), and \(a_5 \leftarrow a_2 + a_5 \)
- In (b), after \(k \) steps, \(a_{\text{small}} = 2^i - 1 \) and \(a_{\text{large}} = 3^i - 1 \) — ratio is \(a_{\text{large}} / a_{\text{small}} = (3/2)^i - 1 \)
HITS score stability

- E is the node adjacency matrix
- Authority vector a is dominant eigenvector of $S = E' E$
- Perturb S to \tilde{S}, get \tilde{a} in place of a
- Can S and \tilde{S} be close yet a and \tilde{a} far apart?
- Let $\lambda_1 > \lambda_2$ be the two largest eigenvalues of S
- Let $\delta = \lambda_1 - \lambda_2 > 0$
- S has a factorization

\[
S = U \begin{bmatrix}
\lambda_1 & 0 & 0 \\
0 & \lambda_2 & 0 \\
0 & 0 & \Lambda
\end{bmatrix} U',
\]

Each column of U an eigenvector of S having unit L_2 norm; Λ is a diagonal matrix of remaining eigenvalues
Now we define
\[\tilde{S} = S + 2\delta U_2 U'_2 = U \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 + 2\delta & 0 \\ 0 & 0 & \Lambda \end{bmatrix} U'. \]

Because \(\| U_2 \|_2 = 1 \), the \(L_2 \) norm of the perturbation, \(\| \tilde{S} - S \|_2 \), is \(2\delta \).

Given \(\tilde{S} \) instead of \(S \), how will \(\lambda_1 \) and \(\lambda_2 \) change to \(\tilde{\lambda}_1 \) and \(\tilde{\lambda}_2 \)?

By construction \(\tilde{\lambda}_1 = \lambda_1 \) while
\[\tilde{\lambda}_2 = \lambda_2 + 2\delta > \lambda_2 + \delta = \lambda_1 = \tilde{\lambda}_1 \]

Therefore, \(\tilde{\lambda}_1 \) and \(\tilde{\lambda}_2 \) have switched roles and \(\tilde{\lambda}_2 \) is now the largest eigenvalue.

Old \(a = U_1 \); new \(\tilde{a} = U_2 \)
\[\| a - \tilde{a} \|_2 = \| U_1 - U_2 \| = \sqrt{2} \]
HITS rank stability, adversarial

Number of edges changed is $O(1)$

$\Omega(n^2)$ node pairs swapped in authority order

G

\tilde{G}
HITS rank stability in practice

1. Genetic algorithms in search optimization
 - Goldberg
 - Rank: 1
 - Precision: 3
 - Recall: 1
 - F1: 1
 - Support: 1

2. Adaptation in natural and artificial systems
 - Holland
 - Rank: 2
 - Precision: 5
 - Recall: 3
 - F1: 3
 - Support: 2

3. Genetic programming: On the programming of...
 - Koza
 - Rank: 3
 - Precision: 12
 - Recall: 6
 - F1: 6
 - Support: 3

4. Analysis of the behavior of a class of genetic...
 - De Jong
 - Rank: 4
 - Precision: 52
 - Recall: 20
 - F1: 23
 - Support: 4

5. Uniform crossover in genetic algorithms
 - Syswerda
 - Rank: 5
 - Precision: 171
 - Recall: 119
 - F1: 99
 - Support: 5

6. Artificial intelligence through simulated...
 - Fogel
 - Rank: 6
 - Precision: 135
 - Recall: 56
 - F1: 40
 - Support: 8

7. A survey of evolution strategies
 - Back+
 - Rank: 7
 - Precision: 179
 - Recall: 159
 - F1: 100
 - Support: 7

8. Optimization of control parameters for genetic...
 - Grefenstette
 - Rank: 8
 - Precision: 316
 - Recall: 141
 - F1: 170
 - Support: 6

9. The GENITOR algorithm and selection pressure
 - Whitley
 - Rank: 9
 - Precision: 257
 - Recall: 107
 - F1: 72
 - Support: 9

10. Genetic algorithms + Data Structures = ...
 - Michalewicz
 - Rank: 10
 - Precision: 170
 - Recall: 80
 - F1: 69
 - Support: 18

11. Genetic programming II: Automatic discovery...
 - Koza
 - Rank: 11
 - Precision: 7
 - Recall: -
 - F1: -
 - Support: 10

2060. Learning internal representations by error...
 - Rumelhart+
 - Rank: -
 - Precision: 1
 - Recall: 2
 - F1: 2
 - Support: -

2061. Learning to predict by the method of temporal...
 - Sutton
 - Rank: -
 - Precision: 9
 - Recall: 4
 - F1: 5
 - Support: -

2063. Some studies in machine learning using checkers
 - Samuel
 - Rank: -
 - Precision: -
 - Recall: 10
 - F1: 10
 - Support: -

2065. Neuronlike elements that can solve difficult...
 - Barto+Sutton
 - Rank: -
 - Precision: -
 - Recall: 8
 - F1: -
 - Support: -

2066. Practical issues in TD learning
 - Tesauro
 - Rank: -
 - Precision: -
 - Recall: 9
 - F1: 9
 - Support: -

2071. Pattern classification and scene analysis
 - Duda+Hart
 - Rank: -
 - Precision: 4
 - Recall: 7
 - F1: 7
 - Support: -

2075. Classification and regression trees
 - Breiman+
 - Rank: -
 - Precision: 2
 - Recall: 5
 - F1: 4
 - Support: -

2117. UCI repository of machine learning databases
 - Murphy+Aha
 - Rank: -
 - Precision: 7
 - Recall: -
 - F1: 8
 - Support: -

2174. Irrelevant features and the subset selection...
 - John+
 - Rank: -
 - Precision: 8
 - Recall: -
 - F1: -
 - Support: -

2184. The CN2 induction algorithm
 - Clark+Niblett
 - Rank: -
 - Precision: 6
 - Recall: -
 - F1: -
 - Support: -

2222. Probabilistic reasoning in intelligent systems
 - Pearl
 - Rank: -
 - Precision: 10
 - Recall: -
 - F1: -
 - Support: -

- Random erasure of 30% of the nodes
- Fairly serious instability
- Is random erasure the right model?
we are involved in an “infinite regress”: [an actor’s status] is a function of the status of those who choose him; and their [status] is a function of those who choose them, and so ad infinitum.

Seeley, 1949

- Random surfer roams around graph $G = (V, E)$
- Probability of walking from node i to j is $\Pr(j|i) = C(j, i)$
- C is a $|V| \times |V|$ nonnegative matrix; each column sums to 1 (what about dead-end nodes?)
- Steady-state probability of visiting node i is its prestige
Ways to handle dead-end nodes

Amputation: Remove dead-ends, may cause other nodes to become dead-ends, keep removing
 ▶ How to assign scores to the removed nodes?

Self-loop: Each dead-end node i links to itself
 ▶ Still trapped at i; need to escape/restart

Sink node: Dead-end nodes link to a sink node, which links to itself
 ▶ Reasonable, but probability of visiting sink node means nothing

Makes significant difference to node ranks (scilab demo)
Steady state probabilities

Long after the walk gets under way, at any time step, the probability that the random surfer is at a given node. Need two conditions for well-defined steady-state probabilities of being in each state/node:

- **E must be irreducible**: should be able to reach any v starting from any u
- **E must be aperiodic**: There must exist some ℓ_0 such that for every $\ell \geq \ell_0$, G contains a cycle of length ℓ
Simple way to satisfy these conditions: all-to-all transitions

\[\tilde{C} = \alpha C + (1 - \alpha) \frac{1}{|V|} \mathbb{1}_{|V| \times |V|} \]

\[\mathbb{1}_{|V| \times |V|} \] is a matrix filled with 1s; \(\tilde{C} \) also has columns summing to 1

Random surfer walks with probability \(\alpha \), jumps with probability \(1 - \alpha \)

What is the “right” value of \(\alpha \)?

Is \(\alpha \) a device to make \(E \) irreducible and aperiodic, or does it serve other purposes?
Solving the recurrence

- Solve \(p = \alpha C p + (1 - \alpha) \mathbb{1}_{|V| \times 1} \) for steady-state visit probability \(p \in \mathbb{R}^{|V| \times 1} \), with \(p_i \geq 0, \|p\|_1 = \sum_i p_i = 1 \)
- Consider

\[
\hat{C} = \begin{bmatrix}
\alpha C_{|V| \times |V|} & \mathbb{1}_{|V| \times 1} \\
(1 - \alpha) \mathbb{1}_{1 \times |V|} & 0 \\
\end{bmatrix}
\]

- Dummy node \(d \) outside \(V \)
- Transition from every node \(v \in V \) to \(d \)
- And a transition from \(d \) back to every node \(v \in V \)
- Recurrence can now be written as \(\hat{p} = \hat{C} \hat{p} \)
- What is the relation between \(p \) and \(\hat{p} \)?
Pagerank score stability

- V kept fixed
- Nodes in $P \subset V$ get incident links changed in any way (additions and deletions)
- Thus G perturbed to \tilde{G}
- Let the random surfer visit (random) node sequence X_0, X_1, \ldots in G, and Y_0, Y_1, \ldots in \tilde{G}
- Coupling argument: instead of two random walks, we will design one joint walk on (X_i, Y_i) such that the marginals apply to G and \tilde{G}
Coupled random walks on G and \tilde{G}

- Pick $X_0 = Y_0 \sim \text{Multi}(r)$
- At any step t, with probability $1 - \alpha$, reset both chains to a common node using teleport r: $X_t = Y_t \in_r V$
- With the remaining probability of α
 - If $x_{t-1} = y_{t-1} = u$, say, and u remained unperturbed from G to \tilde{G}, then pick one out-neighbor v of u uniformly at random from all out-neighbors of u, and set $X_t = Y_t = v$.
 - Otherwise, i.e., if $x_{t-1} \neq y_{t-1}$ or x_{t-1} was perturbed from G to \tilde{G}, pick out-neighbors X_t and Y_t independently for the two walks.
Analysis of coupled walks

Let $\delta_t = \Pr(X_t \neq Y_t)$; by design, $\delta_0 = 0$.

$$
\delta_{t+1} = \Pr(\text{reset at } t+1) \Pr(X_{t+1} \neq Y_{t+1} | \text{reset at } t+1) + \\
\Pr(\text{no reset at } t+1) \Pr(X_{t+1} \neq Y_{t+1} | \text{no reset at } t+1) \\
= \Pr(\text{reset at } t+1) 0 + \alpha \Pr(X_t \neq Y_t | \text{no reset at } t+1) \\
= \alpha \left(\Pr(X_{t+1} \neq Y_{t+1}, X_t \neq Y_t | \text{no reset at } t+1) + \\
\Pr(X_{t+1} \neq Y_{t+1}, X_t = Y_t | \text{no reset at } t+1) \right)
$$

The event $X_{t+1} \neq Y_{t+1}, X_t = Y_t$ can happen only if $X_t \in P$. Therefore we can continue the above derivation as follows:
Analysis of coupled walks II

\[\delta_{t+1} = \ldots \]
\[\leq \alpha \left(\Pr(X_t \neq Y_t | \text{no reset at } t + 1) + \Pr(X_{t+1} \neq Y_{t+1}, X_t = Y_t, X_t \in P | \text{no reset at } t + 1) \right) \]
\[= \alpha \left(\Pr(X_t \neq Y_t) + \Pr(X_{t+1} \neq Y_{t+1}, X_t = Y_t, X_t \in P | \text{no reset at } t + 1) \right) \]
\[\leq \alpha \left(\Pr(X_t \neq Y_t) + \Pr(X_t \in P) \right) \]
\[= \alpha \left(\delta_t + \sum_{u \in P} p_u \right) , \]

(using \(\Pr(H, J|K) \leq \Pr(H|K) \), and that events at time \(t \) are independent of a potential reset at time \(t + 1 \))

Unrolling the recursion,
\[\delta_\infty = \lim_{t \to \infty} \delta_t \leq \left(\sum_{u \in P} p_u \right) / (1 - \alpha) \]

\[\text{HW} \]
Analysis of coupled walks III

- Standard result: If the probability of a state disagreement between the two walks is bounded, then their Pagerank vectors must also have small L_1 distance to each other. In particular,

$$\|p - \tilde{p}\|_1 \leq 2 \sum_{u \in P} p_u \frac{1}{1 - \alpha}$$

- Lower the value of α, the more the random surfer teleports and more stable is the system.

- Gives no direct guidance why α should not be set to exactly zero! (WAW talk)
Pagerank rank stability: adversarial

- G formed by connecting y to x_a, \tilde{G} by connecting y to x_b
- $\Omega(n^2)$ node pairs flip Pagerank order
- I.e., L_1 score stability does not guarantee rank stability
- Can “natural” social networks lead often to such tie-breaking?
Pagerank rank stability: In practice

- Quite stable, nowhere near adversarial
- Random 30% erasure hits many unpopular nodes, $\sum_{u \in P} p_u$ small
- Is random erasure a good assumption?
Other nonstandard path decay functions

- Standard Pagerank can be written as

\[p(\alpha) = (1 - \alpha) \sum_{t \geq 0} \alpha^t rP^t = (1 - \alpha) (\mathbb{I} - \alpha P)^{-1} \frac{1}{|V|} \]

where \(P \) is the row-normalized node adjacency matrix

- For path \(\pi = (x_1, \ldots, x_k) \), let

\[\text{branching}(\pi) = \frac{1}{d_1 \cdot d_2 \cdots d_{k-1}} \]

- Equivalent Pagerank expression is

\[p_i(\alpha) = \sum_{\pi \in \text{path}(\cdot, i)} (1 - \alpha) \alpha^{\left|\pi\right|} \text{branching}(\pi) / |V| \]

- Can generalize to

\[p_i = \sum_{\pi \in \text{path}(\cdot, i)} \text{damping}(|\pi|) \text{branching}(\pi) / |V| \]

- Important application: fighting link spam
Probabilistic HITS variants

In the analysis thus far, Pagerank’s stability over HITS seems to come from two features:

- Pagerank *divides* among out-neighbors; hub score *copies* (which is why in HITS continual rescaling is needed)
- Pagerank uses teleport; HITS does not

Consider this authority-to-authority transition, starting at u

- Walk back to an in-neighbor of u, say w, chosen uniformly at random from all in-neighbors of v
- From w walk forward to an out-neighbor of w, chosen uniformly at random from all out-neighbors of w

No teleport yet, but dividing rather than copying
Combining the two half-steps, transition probability from authority \(v \) to authority \(w \) is

\[
Pr(w|v) = \frac{1}{\text{InDegree}(v)} \sum_{(u,v),(u,w)\in E} \frac{1}{\text{OutDegree}(u)}
\]

Suppose all pairs of authority nodes are connected to each other through alternating hub-authority paths.

Then \(\pi_v \propto \text{InDegree}(v) \) is a fixpoint of the authority-to-authority transition process.

Overkill? Prevents any cocitation-based reinforcement!
Let the given graph be \(G = (V, E) \). Remove any isolated nodes from \(G \) where no edge is incident.

From \(G \) construct a bipartite graph \(G_2 = (L, R, E_2) \), with \(L = R = V \) and for each \((u, v) \in E\) connect the node corresponding to \(u \) in \(L \) to the node corresponding to \(v \) in \(R \). By construction every node in \(L \) has some outlink and every node in \(R \) has some inlink.

Write down the \((2|V|) \times (2|V|)\) node adjacency matrix for \(G_2 \).

Write down the row-normalized node-adjacency matrix, which we will call \(E_2^{\text{row}} \). Each row corresponding node \(u \in L \) will add up to 1, and the rows for \(v \in R \) will be all zeros.
HITS with teleport II

- Write down the column-normalized node-adjacency matrix, which we will call E_{2}^{col}. Each row corresponding to node $\nu \in R$ will add up to 1, and the rows for $u \in L$ will be all zeros.

- Initialize an authority vector $a^{(0)}$ to be nonzero only for $\nu \in R$, with value $1/|R|$, and zero for all $u \in L$. Let $\mathbb{1}_h$ represent the uniform teleport vector distributed only over nodes in L, and $\mathbb{1}_a$ represent the uniform teleport vector.
HITS with teleport III

distributed only over nodes in R. Compute the following iteratively:

\[
\begin{align*}
 h^{(1)} &= \alpha a^{(0)} E_2^{\text{col}} + (1 - \alpha) \mathbb{1}_h \\
 a^{(1)} &= \alpha h^{(1)} E_2^{\text{row}} + (1 - \alpha) \mathbb{1}_a \\
 \cdots \cdots \\
 h^{(k)} &= \alpha a^{(k-1)} E_2^{\text{col}} + (1 - \alpha) \mathbb{1}_h \\
 a^{(k)} &= \alpha h^{(k)} E_2^{\text{row}} + (1 - \alpha) \mathbb{1}_a
\end{align*}
\]

e tc. until convergence
HITS with teleport: Experience

<table>
<thead>
<tr>
<th></th>
<th>Learning internal representations by error...</th>
<th>Rumelhart+</th>
<th>1</th>
<th>3</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Probabilistic Reasoning in Intelligent Systems</td>
<td>Pearl</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Classification and Regression Trees</td>
<td>Breiman+</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Pattern classification and scene analysis</td>
<td>Duda+Hart</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Maximum likelihood from incomplete data via...</td>
<td>Dempster+</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>A robust layered control system for a mobile robot</td>
<td>Brook+</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>Numerical Recipes in C</td>
<td>Press+al</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>Learning to Predict by the Method of Temporal...</td>
<td>Sutton</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>STRIPS: A New Approach to ... Theorem Proving</td>
<td>Fikes+</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>Introduction To The Theory Of Neural Computation</td>
<td>Hertz+</td>
<td>11</td>
<td>11</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>Stochastic relaxation, gibbs distributions, ...</td>
<td>Geman+</td>
<td>10</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>Introduction to Algorithms</td>
<td>Cormen+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10</td>
</tr>
</tbody>
</table>

- Clearly much more rank-stable than HITS
- Is α all there is to stability?
- How to set α taking both content and links into account? (WAW talk)
Personalized Pagerank

- Recall we were solving $p = \alpha Cp + (1 - \alpha) \frac{\mathbb{1}_{|V|} \times 1}{|V|}$

- Can replace $\frac{\mathbb{1}_{|V|} \times 1}{|V|}$ with arbitrary teleport vector r, $r_i \geq 0$, $\sum_i r_i = 1$, examples:
 - $r_i > 0$ for pages i that you have bookmarked, 0 for other pages
 - $r_i > 0$ for pages about topic “Java programming”, 0 for other pages

- Extreme case of r: $r_i = 1$ for some specific node, 0 for all others — r called x_i in that case (“basis vector”)

- p is a function of r (and C) — write as p_r
Topic-sensitive Pagerank

Details of how query is “projected” to topic space
Clear improvement in precision
Page staleness

“A page is stale if it is inaccessible, or if it links to many stale pages”—to find how stale a page u is,

1: $v \leftarrow u$
2: for ever do
3: if page v is inaccessible then
4: return $s(u) = 1$
5: toss a coin with head probability σ
6: if head then
7: return $s(u) = 0 \{\text{with probability } \sigma\}$
8: else
9: choose $w : (v, w) \in E$ with probability $\propto C(w, v)$
10: $v \leftarrow w$

$$s(u) = \begin{cases} 1, & u \in D \\ (1 - \sigma)\sum_v C(v, u) s(v), & \text{otherwise} \end{cases}$$
Staleness of a page is generally larger than the fraction of dead links on the page would have you believe.
Biased walk for keyword search in graphs

- Teleport to query word nodes (3)
- Also teleport to entity nodes (4)
- Competition between relevance to query and query-independent prestige
- Each edge e has type $t(e)$ and weight $\beta(t(e))$
Effect of tuning edge weights

<table>
<thead>
<tr>
<th>Transaction serializability, $\beta(d \rightarrow \text{word})/\beta(d \rightarrow \text{entity}) = 1$</th>
<th>#cites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graph based algorithms for boolean function manipulation</td>
<td>506</td>
</tr>
<tr>
<td>Scheduling algorithms for multiprogramming in a hard real time environment</td>
<td>413</td>
</tr>
<tr>
<td>A method for obtaining digital signatures and public key cryptosystems</td>
<td>312</td>
</tr>
<tr>
<td>Rewrite systems</td>
<td>265</td>
</tr>
<tr>
<td>Tcl and the Tk toolkit</td>
<td>242</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transaction serializability, $\beta(d \rightarrow \text{word})/\beta(d \rightarrow \text{entity}) = 10^6$</th>
<th>#cites</th>
</tr>
</thead>
<tbody>
<tr>
<td>On serializability of multidatabase transactions through forced local conflicts</td>
<td>38</td>
</tr>
<tr>
<td>Autonomous transaction execution with epsilon serializability</td>
<td>6</td>
</tr>
<tr>
<td>The serializability of concurrent database updates</td>
<td>104</td>
</tr>
<tr>
<td>Serializability a correctness criterion for global concurrency control in interbase</td>
<td>41</td>
</tr>
<tr>
<td>Using tickets to enforce the serializability of multidatabase transactions</td>
<td>12</td>
</tr>
</tbody>
</table>

- For small $\beta(d \rightarrow \text{word})$, query is essentially ignored
- Larger $\beta(d \rightarrow \text{word})$ gives better balance between query-independent prestige and query-dependent match
- Can learn $\beta(t)$s up to a scale factor from \prec (WAW talk)
Personalization: Two key properties

- Cannot pre-compute p_r for all possible r
- Can we assemble Pageranks for an arbitrary r from Pageranks computed using “basis vectors”?

Linearity: If p_{r_1} is a solution to $p = \alpha Cp + (1 - \alpha)r_1$ and p_{r_2} is a solution to $p = \alpha Cp + (1 - \alpha)r_2$, then $p = \lambda p_{r_1} + (1 - \lambda)p_{r_2}$ is a solution to $p = \alpha Cp + (1 - \alpha)(\lambda r_1 + (1 - \lambda)r_2)$, where $0 \leq \lambda \leq 1$

Decomposition: If p_{x_u} is the Pagerank vector for $r = x_u$ and u has outlinks to neighbors v, then

$$p_{x_u} = \sum_{(u,v) \in E} \alpha C(v, u)p_{x_v} + (1 - \alpha)x_u$$
Learning r from $≺$

- Recall $p = \alpha Cp + (1 - \alpha)r$, i.e., $(I - \alpha C)p = (1 - \alpha)r$, or $p = (1 - \alpha)(I - \alpha C)^{-1}r = Mr$, say

- $≺$ can be encoded as matrix $\Pi \in \{-1, 0, 1\}^{|V| \times |V|}$ and written as $\Pi p \geq 0^{1 \times 1}$ (each row expresses one pair preference)

- “Parsimonious teleport” is uniform $r_0 = \mathbb{1}_{|V| \times 1}/|V|$; that gives us standard Pagerank vector $p_0 = Mr_0$

- Want to deviate from p_0 as little as possible while satisfying $≺$

$$\min_{r \in \mathbb{R}^{|V|}} (Mr - p_0)'(Mr - p_0) \quad \text{subject to}$$

$$\Pi Mr \geq 0, \quad r \geq 0, \quad \mathbb{1}'r = 1$$

(quadratic objective with linear inequalities)
Pagerank as network flow

- Extend from learning \(r \) to learning “flow” of Pagerank on each edge \(p_{uv} = p_u C(v, u) = p_u \Pr(v|u) \)

- A valid flow satisfies

\[
\sum_{(u,v) \in E'} p_{uv} = 1 \tag{Total}
\]

\[
\forall v \in V' \sum_{(u,v) \in E'} p_{uv} = \sum_{(v,w) \in E'} p_{vw} \tag{Balance}
\]

For all \(v \in V_o \subseteq V \) having at least one outlink

\[
(1 - \alpha) \sum_{(v,w) \in E} p_{vw} = \alpha p_{vs} \tag{Teleport}
\]

- Pagerank satisfies these constraints, but so do many other flows
Maximum entropy flow

▶ Any principle to prefer one flow over another? **Maximize entropy** \(\sum_{(u,v) \in E'} -p_{uv} \log p_{uv} \)

▶ Or, stay close to a reference flow \(q \) by **\(\min_p \text{KL}(p\|q) \)**

▶ The flows \(p_{uv} \) look like (\(\beta \) and \(\tau \) unconstrained) \(\text{HW} \)

\[
\begin{align*}
\forall v \in V & \quad p_{dv} = \left(\frac{1}{Z} \right) q_{dv} \exp(\beta_v - \beta_d) \\
\forall v \in V_o & \quad p_{vd} = \left(\frac{1}{Z} \right) q_{vd} \exp(\beta_d - \beta_v + \alpha \tau_v) \\
\forall v \in V \setminus V_o & \quad p_{vd} = \left(\frac{1}{Z} \right) q_{vd} \exp(\beta_d - \beta_v) \\
\forall (u, v) \in E & \quad p_{uv} = \left(\frac{1}{Z} \right) q_{uv} \exp(\beta_v - \beta_u - (1 - \alpha)\tau_u)
\end{align*}
\]

▶ Dual objective is **\(\max_{\beta, \tau} -\log Z \)**, with \(Z = \sum_{(u,v) \in E'} p_{uv} \)

▶ Can now add constraints like (WAW talk)

\[
\forall u < v : \quad \sum_{(w,u) \in E'} p_{wu} - \sum_{(w,v) \in E'} p_{wv} \leq 0 \quad \text{(Preference)}
\]
Labeling feature vectors and graph nodes
Labeling feature vectors

Training data: \((x_i, y_i), i = 1, \ldots, n, x_i \in \mathcal{X}\) (often \(\mathbb{R}^d\))
\[y_i \in \mathcal{Y} = \{-1, +1\} \]

Single test instance: Given \(x\) not seen before, want to predict \(Y\)

Batch of test instances: Given many \(x\)s in a batch, predict \(Y\) for each \(x\)

Transductive learning: Given training and test batch together

Predictor: A parameterized function \(f : \mathcal{X} \rightarrow \mathcal{Y}\); parameters learnt from training data

Loss: For instance \((x, y)\), 1 if \(f(x) \neq y\), 0 otherwise

Training loss: \(\sum_{i=1}^{n} \left[y_i \neq f(x_i) \right] \)
Supervised learning approaches

Discriminative learning: Directly minimize (regularized) training loss

Joint probabilistic learning: Build a model for $\Pr(x, y)$, use Bayes rule to get $\Pr(Y = y | x)$

Conditional probabilistic learning: Directly build a model for $\Pr(Y = y | x)$
Linear parameterization of f

- Let $f(x) = x\beta$, where $x \in \mathbb{R}^{1 \times d}$ and $\beta \in \mathbb{R}^{d \times 1}$
- Training loss $\sum_{i=1}^{n} \left[y_i \neq f(x_i) \right] = \sum_{i=1}^{n} \left[y_i x_i \beta < 0 \right]$
- As in ranking, we may insist on more than $y_i x_i \beta \geq 0$; say we want $y_i x_i \beta \geq 1$
- Training loss is $\sum_{i=1}^{n} \left[y_i x_i \beta < 1 \right] = \sum_i \text{step}(1 - y_i x_i \beta)$

\[
\text{step}(z) = \begin{cases}
0, & z \leq 0 \\
1, & z > 0
\end{cases}
\]

- Step function has two problems wrt optimization of β
 - It is not differentiable everywhere
 - It is not convex
- Design surrogates for training loss so that we can search for β
Hinge loss

- $\max\{0, 1 - y_i x_i \beta\}$ is an upper bound on training loss

$$\min_{\beta, s} \frac{1}{2} \beta' \beta + \frac{B}{n} \sum_i s_i \quad \text{subject to} \quad \forall i\quad s_i \geq 1 - y_i x_i \beta, \quad s_i \geq 0$$

- Standard soft-margin primal SVM; dual is

$$\min_{\alpha \in \mathbb{R}^n} \frac{1}{2} \alpha' X' Y' Y X \alpha - 1' \alpha$$

subject to $\forall i:\ 0 \leq \alpha_i \leq B$ and $y' \alpha = 0$

Here $y = (y_1, \ldots, y_n)'$ and $Y = \text{diag}(y)$.
Soft hinge loss

- “Soft hinge loss” $\ln(1 + \exp(1 - y_i x_i \beta))$ is a reasonable approximation for $\max\{0, 1 - y_i x_i \beta\}$
- (Primal) optimization becomes

$$
\min_\beta \frac{1}{2} \beta' \beta + \frac{B}{n} \sum_i \ln(1 + \exp(1 - y_i x_i \beta))
$$

- Compare with logistic regression with a Gaussian prior:

$$
\max_\beta \sum_i \log \Pr(y_i | x_i) - \frac{\lambda}{2} \beta' \beta
\quad = \min_\beta \sum_i - \log \Pr(y_i | x_i) + \frac{\lambda}{2} \beta' \beta
\quad = \min_\beta \sum_i \ln(1 + \exp(-y x_i \beta)) + \frac{\lambda}{2} \beta' \beta
$$
Classification for large \mathcal{Y}

Collective labeling of a large number of instances, whose labels cannot be assumed to be independent, e.g.,

- Assigning multiple topics from a topic tree/dag to a document
- Assigning parts of speech (pos) to a sequence of tokens in a sentence
- Matching tokens across an English and a Hindi sentence that say the same thing

A generic device: include x and y into a feature generator $\psi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}^d$

- Given x, prediction is $\arg\max_{y \in \mathcal{Y}} \beta' \psi(x, y)$
- In training set, want $\beta' \psi(x_i, y_i)$ to beat $\beta' \psi(x_i, y)$ for all $y \neq y_i$
Large \(\mathcal{Y} \) example: Markov chain

- For simplicity assume all sequences of length exactly \(T \); \(x, y \) now sequences of length \(T \)
- Labels \(\Sigma \) (noun, verb, preposition, etc.); \(\mathcal{Y} = \Sigma^T \), huge
- \(x_i^t, (y_i^t) \) is the \(t \)th token (label) of the \(i \)th instance
- Suppose there are \(W \) word-based features, e.g., hasCap, hasDigit etc.
- \(\psi(x, y) = \in \mathbb{R}^d \) where \(d = W |\Sigma| + |\Sigma| |\Sigma| \)

\[
\psi(x, y) = \sum_{t=1}^{T} \psi(y^{t-1}, y^t, x, t),
\]

where
\[
\psi(y, y', x, t) = (\overbrace{\hat{\psi}(x, y')}^{W |\Sigma|, \text{emission}}, \overbrace{\vec{\psi}(y, y')}^{|\Sigma| |\Sigma|, \text{transition}})
\]

- Corresponding model weights \(\beta = (\hat{\beta}, \vec{\beta}) \in \mathbb{R}^d \)
Max-margin training for large \mathcal{Y}

- Given $(x_i, y_i), i = 1, \ldots, n$, want to find β such that for each instance i,

$$\beta' \psi(x_i, y_i) \geq \beta' \psi(x_i, y) + \text{margin} \quad \forall y \in \mathcal{Y} \setminus \{y_i\}$$

- Leads to the following optimization problem:

$$\min_{\beta,s \geq 0} \frac{1}{2} \beta' \beta + \frac{B}{n} \sum_i s_i \quad \text{subject to}$$

$$\forall i, \forall y \neq y_i \quad \beta' \delta \psi_i(y) \geq 1 - \frac{s_i}{\Delta(y_i, y)}$$

- $\Delta(y_i, y)$ is severity of mismatch
- $\delta \psi_i(y)$ is shorthand for $\psi(x_i, y_i) - \psi(x_i, y)$
- Exponential number of constraints in primal and variables $\alpha_{i y}$ in dual
Cutting plane algorithm to optimize dual

- **Primal**: \(\min_x f(x) \) subject to \(g(x) \leq 0\)
- **Dual**: \(\max_{x,z} z \) subject to \(u \geq 0\), \(z \leq f(x) + u' g(x)\) \(\forall x\)
- **Approximate finite dual**: \(\max z\) s.t. \(z \leq f(x_j) + u' g(x_j)\) for \(j = 1, \ldots, k - 1\), \(u \geq 0\)
- **“Master program”**: for \(k = 1, 2, \ldots\)
 - Let \((z_k, u_k)\) be current solution
 - Solve \(\min_x f(x) + u_k' g(x)\) to get \(x_k\)
 - If \(z_k \leq f(x_k) + u_k' g(x_k) + \epsilon\) terminate
 - Add constraint \(z \leq f(x_k) + u' g(x_k)\) to approximate dual
- **Dual max objective is non-decreasing with \(k\)**
- **Strictly increasing if \(\epsilon > 0\)**
SVM training for structured prediction

1: $S_i = \emptyset$ for $i = 1, \ldots, n$
2: repeat
3: for $i = 1, \ldots, n$ do
4: current $\beta = \sum_j \sum_{y' \in S_j} \alpha_{jy'} \delta \psi_j(y')$ (Representer Theorem)
5: we want $\beta' \delta \psi_i(y) \geq 1 - s_i / \Delta(y_i, y)$ or $s_i \geq \Delta(y_i, y)(1 - \beta' \delta \psi_i(y)) = H(y), \text{ say}$
6: $\hat{y}_i = \arg \max_{y \in Y} H(y)$ \{to look for violations\}
7: $\hat{s}_i = \max\{0, \max_{y \in S_i} H(y)\}$
8: if $H(\hat{y}_i) > \hat{s}_i + \epsilon$ then
9: add \hat{y} to S_i \{admit $\alpha_i \hat{y}$ into dual\}
10: $\alpha_S \leftarrow$ dual optimum for $S = \bigcup S_i$
11: until no S_i changes
Structured SVM: Analysis sketch

- Let $\bar{\Delta} = \max_{i,y} \Delta(y_i, y)$, $\bar{R} = \max_{i,y} \|\delta\psi_i(y)\|_2$
- After every inclusion, dual objective increases by
 $$\min \left\{ \frac{B\epsilon}{2n}, \frac{\epsilon^2}{8\bar{\Delta}^2\bar{R}^2} \right\}$$
- Dual objective upper bounded by min of primal which is at most $B\bar{\Delta}$
- Number of inclusion rounds is at most
 $$\max \left\{ \frac{2n\bar{\Delta}}{\epsilon}, \frac{8B\bar{\Delta}^3\bar{R}^2}{\epsilon^2} \right\}$$
- Need inference subroutine: $\max_y \Delta(y_i, y)(1 - \beta'\delta\psi_i(y))$
- Can do this for Markov chains in poly time
Directed probabilistic view of Markov network

Concrete setting:

- Hypertext graph $G(V, E)$
- Each node u is associated with observable text $x(u)$; text of node set A denoted $x(A)$
- Each node has unknown (topic) label y_u; labels of node set A denoted $y(A)$

Our goal is

$$\arg\max_{y(V)} \Pr(y(V)|E, x(V)) = \arg\max_{y(V)} \frac{\Pr(y(V)) \Pr(E, x(V)|y(V))}{\Pr(E, x(V))}$$

where $\Pr(E, x(V)) = \sum_{y(V)} \Pr(y(V)) \Pr(E, x(V)|y(V))$

is a scaling factor (which we do not need to know for labeling).
Using the Markov assumption

- $V^K \subset V$ has known labels $y(V^K)$
- Fix node v with neighbors $N(v)$
- Known labels for $N^K(v)$, unknown labels for $N^U(v)$

\[
\Pr(Y(v) = y | E, x(V), y(V^K)) = \sum_{y(N^U(v)) \in \Omega_v} \Pr(y, y(N^U(v)) | E, x(V), y(V^K)) \\
= \sum_{y(N^U(v)) \in \Omega_v} \Pr(y(N^U(v)) | E, x(V), y(V^K)) \Pr(y | y(N^U(v)), E, x(V), y(V^K))
\]

- $\Omega_v = \text{label configurations of } N^U(v) \text{ (can be large)}$
- “Solve for” all $\Pr(Y(v) = y | \ldots)$ simultaneously
Relaxation labeling

- To ease computation, approximate as in naive Bayes

\[
\Pr(y(N^U(v)) \mid E, x(V), y(V^K)) \\
\approx \prod_{w \in N^U(v)} \Pr(y(w) \mid E, x(V), y(V^K))
\]

- Estimated class probabilities in the \(r \)th round is

\[
\Pr_r(y(v) \mid E, x(V), y(V^K)).
\]

- May use a text classifier for \(r = 0 \)
Relaxation steps

- Update as follows

\[
\Pr_{(r+1)}(y(v) \mid E, x(V), y(V^K)) \\
\approx \sum_{y(N^U(v)) \in \Omega_v} \left[\prod_{w \in N^U(v)} Pr_{(r)}(y(w) \mid E, x(V), y(V^K)) \right] \Pr(y(v) \mid y(N^U(v)), E, x(V), y(V^K))
\]

- More approximations

\[
\Pr(y(v) \mid y(N^U(v)), E, x(V), y(V^K)) \\
\approx \Pr(y(v) \mid y(N^U(v)), E, x(V), y(N^K(v))) \\
\approx \Pr(y(v) \mid y(N(v)), x(v))
\]

- Add terms for deterministic annealing? [HW]
Relaxation labeling: Sample results

- Randomly sample node, grow neighborhood, randomly erase fraction of known labels, reconstruct, evaluate
- Text+link better than link better than text-only
- Link better than text even when *all* labels wiped out! (associative prior: pages link to similar pages)
Undirected view of Markov network

- Each node u represents random variable X_u
- Undirected edges express potential dependencies
- Each clique $c \subseteq V$ has associated potential function ϕ_c
 - Input to ϕ is an assignment of values to X_c, say x_c
 - ϕ outputs a real number
- $\Pr(x) \propto \prod_{c \in C} \phi_c(x_c)$ (C is set of all cliques) — Hammersley-Clifford theorem
- $\Pr(x) = \frac{1}{Z} \prod_{c \in C} \phi_c(x_c)$ where $Z = \sum_x \prod_{c \in C} \phi_c(x_c)$ is the partition function

Conditional Markov networks

- Each node v has observable x_v and unobserved label y_v

$$\Pr(y|x) = \frac{1}{Z(x)} \prod_{c \in C} \phi(x, y_c)$$
Potential functions and feature generators

- \(\Pr(y|x) = \frac{1}{Z(x)} \prod_{c \in C} \phi_c(x, y_c) = \frac{1}{Z(x)} \exp \left(\sum_{c \in C} \psi_c(x, y_c) \right) \)
- Write (log) potential function \(\psi \) as
 \[
 \psi_c(x, y_c) = \sum_k \beta_k f_k(x, y_c; c) = \beta' F(x, y_c; c)
 \]
- \(F \) is a feature (vector) generator
- \(c \) is a clique identifier; e.g., in case of a linear chain, \(c = (t - 1, t) \)
Potential functions and feature generators II

- k is a feature identifier
- One feature may consider only t, y_t and x_t, and emit a number reflecting the compatibility between state y_t and observed word output x_t, or topic y_t and observed document x_t
- Another feature may consider only t, y_{t-1} and y_t, and emit a number reflecting the belief that a $y_{t-1} \rightarrow y_t$ can occur
- Have a weight β_k for each k
- Given fixed β, inference finds the most likely $y \in \mathcal{Y}$ (will see LP and QP relaxations soon)
- During training we fit β
- Training often uses inference as a subroutine
Training log-linear models

- Our goal is to find $\max_\beta L(\beta)$ where

$$L(\beta) = \sum_{i=1}^{n} \log \Pr(y_i|x_i)$$

$$= \sum_{i=1}^{n} \left[\sum_c \beta' F(x_i, y_{i,c}; c) - \log Z(x_i) \right]$$

$$\frac{\partial L}{\partial \beta} = \sum_{i=1}^{n} \left[\sum_c F(x_i, y_{i,c}; c) - \frac{\partial}{\partial \beta} \log Z(x_i) \right]$$

$$= \sum_{i=1}^{n} \left[\sum_c \left(F(x_i, y_{i,c}; c) - E_{Y|x_i} F(x_i, Y_c; c) \right) \right]$$

- At optimum $F(x_i, y_{i,c}; c) = E_{Y|x_i} F(x_i, Y_c; c)$
- Once we have a procedure for the difficult part, we can easily use gradient-based methods to optimize for β
- For Markov chains, can use Viterbi decoding
Inference for Markov networks: LP relaxation

- Labeling to minimize energy

\[
\min_{y(V)} \left[\sum_{u \in V} c(u, y(u)) + \sum_{(u, v) \in E} w(u, v) \Gamma(y(u), y(v)) \right]
\]

- \(c\) models local information at \(u\)
- \(\Gamma\) models compatibility of neighboring labels
- For two labels, sometimes easy via mincut
Inference for Markov networks: LP relaxation II

- Integer program formulation for $\Gamma(y, y') = [y \neq y']$

$$\min \sum_{e \in E} w_e z_e + \sum_{u \in V, y \in \mathcal{Y}} c(u, y) x_{uy}$$

subject to

$$\sum_{y \in \mathcal{Y}} x_{uy} = 1 \quad \forall u \in V$$

$$z_e = \frac{1}{2} \sum_{y} z_{ey} \quad \forall e \in E$$

$$z_{ey} \geq x_{uy} - x_{vy} \quad \forall e = (u, v), \forall y$$

$$z_{ey} \geq x_{vy} - x_{uy} \quad \forall e = (u, v), \forall y$$

$$x_{uy} \in \{0, 1\} \quad \forall u \in V, y \in \mathcal{Y}$$

- Can round to a factor of 2
Inference for Markov networks: QP relaxation

- $\theta_{s;j}$ compatibility of node s with label j
- $\theta_{s,j;t,k}$ compatibility of edge (s, t) with labels (j, k)

$$\max \sum_{s,j} \theta_{s;j} [y(s) = j] + \sum_{s,j;t,k} \theta_{s,j;t,k} [y(s) = j][y(t) = k]$$

subject to $\sum_{j} [y(s) = j] = 1$
Inference for Markov networks: QP relaxation II

- Relaxation of $y(s) = j$ to $\mu(s,j)$:

$$\max \sum_{s,j} \theta_{s,j} \mu(s,j) + \sum_{s,j;t,k} \theta_{s,j;t,k} \mu(s,j) \mu(t,k)$$

subject to $\sum_j \mu(s,j) = 1$ \hspace{1cm} $\forall s$

$$0 \leq \mu(s,j) \leq 1$$ \hspace{1cm} $\forall s,j$

- No integrality gap (proof via probabilistic method)
- Limitation: efficient QP solvers work only if $\Theta = \{\theta_{s,j;t,k}\}$ is negative definite
- If we try to make Θ negative definite, gap develops between QP optimum and label assignment
Concluding remarks

- Graphs and probability: at the intersection of statistics and classic AI knowledge representation
- Two computation paradigms: pushing weights along edges (Pagerank etc.) and computing local distributions or belief measures (graphical models)
- Lots of difficult problems!
 - Modeling
 - Optimization
 - Performance on real computers on large data
- Real applications both a challenge and an opportunity