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Outline
• Internet architecture and Internet topology

• On measuring Internet connectivity

• On inferring Internet connectivity structures

• On modeling Internet connectivity

• On validating models of Internet connectivity 
structures
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The Internet: The User Perspective
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The Internet: The Engineering Perspective
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The Internet is a LAYERED Network
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The perception of the Internet as a 
simple, user-friendly, and robust 

system is enabled by FEEDBACK and 
other CONTROLS that operate both 

WITHIN LAYERS and ACROSS 
LAYERS.

These ARCHITECTURAL 
DETAILS (protocols, interfaces, 
etc.) are MOST ESSENTIAL to 

the nature of the Internet.
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Internet Architecture: Vertical Decomposition
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• Each layer can evolve 
independently

• Substitutes, complements
Requirements:
1. Each layer follows the rules
2. Every other layer does “good 

enough” with its 
implementation
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Internet Architecture: Horizontal Decomposition

HTTP

TCP
IP

LINK

my
computer

router router

web
server

Horizontal decomposition
Each level is decentralized and asynchronous

Benefit: Individual components can 
fail (provided that they “fail off”) 
without disrupting the network.
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Internet Connectivity: The “hourglass” 
Architecture

Applications

TCP

IP

Transmission

WWW, Email, Napster, FTP, …

Ethernet, ATM, POS, WDM, …

• Consider a (vertical) layer of the Internet hourglass
• Expand it horizontally
• Give layer-specific meaning to “nodes” and “links”
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“links”

“nodes”



11

Router-Level Internet
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From Router-Level to Autonomous System (AS)-
Level Internet
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AS Graphs = Business Relationships

AS 1 AS 3

AS 4AS 2

Nodes = ASes
Links = peering
relationships



14

AS Graphs obscure Topology!

The AS graph
may look like this. Reality may be closer to this… 

Courtesy Tim Griffin
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(Part of the) Web Graph

Nodes = documents, connections = hyperlinks
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The many Facets of Internet Topology 
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virtual
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Router-level 
connectivity

IP-level connectivity

Autonomous 
System (AS) graph

Web graph
Email graph
P2P graph
and many others  
…
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MESSAGE #1: Specify WHICH aspect of 
Internet topology

• There is no “generic” Internet topology
• The many facets of Internet topology

– Router-level (physical)
– IP-level (logical)
– AS-level (logical)
– Application-level (logical)
– …

• Details of each make a big difference
• Lack of specificity can cause confusion

– Albert, Jeong, and Barabasi (2000) study robustness 
properties of the Internet by equating AS-level topology 
with router-level topology

– Knocking out nodes in the AS graph??
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On Measuring Internet Connectivity
• No central agency/repository 
• Economic incentive for ISPs to obscure network 

structure
• Direct inspection is typically not possible
• Based on measurement experiments, hacks
• Mismatch between what we want to measure and 

can measure
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On Measuring the Internet’s Router-level Topology
• traceroute tool 

– Discovers compliant (i.e., IP) routers along path 
between selected network host computers

• Large-scale traceroute experiments
– Pansiot and Grad (router-level map from around 

1995)
– Cheswick and Burch (mapping project 1997--)
– Mercator (router-level maps from around 1999 by 

R. Govindan and H. Tangmunarunkit)
– Skitter (ongoing mapping project by CAIDA folks)
– Rocketfuel (state-of-the-art router-level maps of 

individual ISPs by UW folks)
– Dimes (EU project)
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http://research.lumeta.com/ches/map/ 
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http://www.isi.edu/scan/mercator/mercator.html
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http://www.caida.org/tools/measurement/skitter/
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http://www.cs.washington.edu/research/networking/rocketfuel/bb
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http://www.cs.washington.edu/research/networking/rocketfuel/
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HOWEVER: Problems with existing measurements
• traceroute-based measurements are ambiguous

– traceroute is strictly about IP-level connectivity
– traceroute cannot distinguish between high 

connectivity nodes that are for real and that are fake 
and due to underlying Layer 2 (e.g., Ethernet, ATM) 
or Layer 2.5 technologies (e.g., MPLS)
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http://www.caida.org/tools/measurement/skitter/

www.savvis.net
managed IP 
and hosting 
company
founded 1995
offering “private 
IP with ATM at 
core”

This “node” is 
an entire 

network! (not 
just a router)
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http://www.cs.washington.edu/research/networking/rocketfuel/

Illusion of a fully-meshed 
Network due to use of MP
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HOWEVER: Problems with existing measurements
• traceroute-based measurements are ambiguous

– traceroute is strictly about IP-level connectivity
– traceroute cannot distinguish between high 

connectivity nodes that are for real and that are fake 
and due to underlying Layer 2 (e.g., Ethernet, ATM) 
or Layer 2.5 technologies (e.g., MPLS)

• traceroute-based measurements are inaccurate
– Requires some guesswork in deciding which IP 

addresses/interface cards refer to the same router 
(“alias resolution” problem)

• traceroute-based measurements are incomplete/biased
– IP-level connectivity is more easily/accurately inferred 

the closer the routers are to the traceroute source(s)
– Node degree distribution is inferred to be of the 

power-law type even when the actual distribution is 
not 
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On Measuring the Internet’s AS-level Topology
• BGP routing tables/updates

– RouteViews (Univ. of Oregon)
– RIPE (Europe)
– E.g., 129.223.224.0/19  7018 701 4637 1221

• Traceroute measurements
– Skitter (CAIDA)
– Dimes

• Other available sources
– Public databases (WHOIS)
– Looking glass sites, additional routing tables
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HOWEVER: Problems with existing measurements
• BGP-based measurements are incomplete

– Contains most nodes (ASes)
– Might miss up to 40-50% of existing links

• BGP-based measurements are ambiguous
– Dynamics of AS-level Internet
– Requires some guesswork in deciding whether a 

“new” node or link is genuine
• BGP-based measurements are inaccurate

– Use of heuristics for inferring peering relationships
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On Measuring the Internet’s Overlay Topologies

• P2P networks
– Structured (e.g., Kad DHT):  Central control
– Unstructured (e.g., Gnutella): Crawler
– Sampling

• World-Wide-Web (WWW)
– AltaVista crawls (Broder et al,) in 1999
– Duration is a couple of weeks
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HOWEVER: Problems with existing measurements
• High degree of dynamics of overlay networks

– Connectivity structure changes underneath the 
crawler

– Fast vs. slow crawls
• Enormous size of overlay networks

– Complete crawls take too long
– Alternative approach: Sampling

• Issues of sampling bias
– Due to temporal dynamics of nodes (peers)
– Due to spatial features of overlay topology
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MESSAGE #2: Internet connectivity 
measurements should never be taken at face 

value
• Each technique is typically specific to the network of 

interest (e.g., traceroute for IP-level, BGP tables for AS-
level)

• It is important to understand the process by which the 
measurements were obtained and collected

• Even best-of-breed measurement data is ambiguous, 
inaccurate, and incomplete

• Taking (someone else’s) data at face value may provide a 
false basis for results
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On Inferring Internet Connectivity
• Quality of available data

– See earlier
• Quality of data analysis

– Doing specious analysis with specious data
• Sensitivity of inferred properties to known 

imperfections of the underlying data
– See later
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MESSAGE #3: Be aware of specious analysis 
of specious measurements

• Know your data
• Avoid (non-cumulative) size-frequency plots
• Rely on (cumulative) size-rank plots
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On Modeling Internet Connectivity and Model 
Validation

• All models are wrong …
• There are in general many different 

explanations/models for one and the same 
phenomenon

• Role of randomness vs. design
• To argue in favor of any particular model typically 

requires additional information
– In the form of domain knowledge
– In the form of new or complementary data

• Reproducing a given graph statistics is a data-fitting 
exercise and does not validate a chosen model
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Node Degree (d)

Source: Faloutsos et al. (1999)
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Internet Topology and Power Laws

Node Degree: d = # connections

Router-Level Graph Autonomous System (AS) 
Graph

• A random variable X is said to follow a power law with index α > 
0 if

• Has led to active research in degree-based network models
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Degree-Based (Random) Graph Models
• Basic Idea: traditional random graphs [Erdös & Renyí, 59] 

do not produce power laws, so develop new models that 
explicitly attempt to match the observed (power law) 
distribution in node degree

• Preferential Attachment
– Incremental growth + new nodes attach to high-degree 

nodes 
– “Rich get richer”—power laws in asymptotic limit
– Scale-free networks [Barabási & Albert, 99]
– Generators: Inet, GPL, AB, BA, BRITE, CMU power-law 

generator

• Expected Degree Sequence
– Based on random graph models that skew probability 

distribution to produce power laws in expectation
– Power law random graph (PLRG) [Aiello et al., 00]
– Generalized random graph (GRG) [Chung & Lu, 03]
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Preferential Attachment
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“Error tolerance”
= Loss of random 

node has little 
effect

“Attack vulnerability”
= Targeted loss of 

hub fragments 
network

“Scale-free” networks and 
the 

“Achilles’ heel” of the 
InternetReference: R. Albert, H. Jeong, 

and A.-L. Barabási. Attack and 
error tolerance of complex 
networks. Nature 406, 378-382, 
2000.
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Broad implications for the Internet and other 
networks

Power laws in network connectivity…
⇔ Are necessary and sufficient for “scale-free structure”
⇔ Imply critically connected “hubs”
⇒ Create an Achilles’ heel vulnerability
⇒ Yield a zero epidemic threshold for contagion

⇒Are evidence of fundamental self-organization in 
networks

⇒This self-organization is believed by some to be a 
universal feature of technological, biological, social and 
business networks

⇒Efforts to protect complex networks should focus on the 
most highly-connected components
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• High degree central “hubs”
• From random construction 
• Poor performance and 

robustness

MESSAGE #3: Can construct networks that have the 
same node degree distribution but are OPPOSITES 

otherwise

• Low degree core
• Result of design
• High performance 

and robustness
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CENIC Backbone (as of January 2004)

Abilene
Los Angeles

Abilene
Sunnyvale

The Corporation for 
Education Network 
Initiatives in California 
(CENIC) acts as ISP 
for the state's colleges 
and universities
http://www.cenic.org

Like Abilene, its 
backbone is a sparsely-
connected mesh, with 
relatively low connectivity 
and minimal redundancy.
• no high-degree hubs?
• no Achilles’ heel?
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Cisco 12000 Series Routers

80 Gbps41/812404

120 Gbps61/412406

200 Gbps101/212410

320 Gbps16Full12416

Switching 
CapacitySlotsRack sizeChassis

• Modular in design, creating flexibility in configuration.
• Router capacity is constrained by the number and speed of line 

cards inserted in each slot.

Source: www.cisco.com
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Router Deployment: Abilene and CENIC
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MESSAGE #4: Importance of model validation

• Descriptive modeling that replicates statistical features 
is no more than an exercise in “data fitting”

• Matching given graph statistics should be a by-product 
and not a main focus of modeling

• Emphasis on “closing the loop” (using complementary 
measurements and domain expertise)
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• #1: Specify which aspect of Internet connectivity you 
are interested in 

• #2: Internet connectivity measurements should never 
be taken at face value

• #3: Be aware of specious analysis of specious 
measurements

• #4: It is often easy to construct networks that agree 
with respect to certain graph statistics (e.g., same 
node degree distribution) but are otherwise completely 
different

• #5: Importance of model validation

Take-Home Messages
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Some open Questions
• ISPs design/evolve their networks for a purpose (see 

talk on Friday)
– What is the purpose?
– What are the constraints?
– Where does randomness enter?

• What does the AS-level Internet as a whole try to 
achieve?
– Objective, constraints, uncertainty?

• What is the purpose of a P2P network like Gnutella?
– Objective, constraints, uncertainty?

• What does the Web graph as a whole try to achieve?
– Hopeless, rely on randomness as main driver

• What about social networks?
– An engineering perspective of social networks?
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