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Past and Current Research

My research consists of considering the formation of patterns (localized structures) in reaction-
diffusion systems and their stability. Recently, my focus has been on bistable patterns that consist
of sharp interfaces that form box-like structures as seen in Figure 1, which are called “mesas”. These
types of localized structures are demonstrated in several types of systems and applications. Some
such systems are the model of the Belousov-Zhabotinkii reaction in water-in-oil microemulsion ([1],
[2], [3]), the Brusselator model ([4], [5]), the Gierer-Meinhardt model with saturation used to model
patterns on animal hides ([6], [7], [8]), the Lengyel-Epstein model of the CIMA reaction ([10], [11]),
the model of the coexistence of competing species ([12]), the model of vegetation patterns on arid
land ([13]) and many others.

The focus of my PhD research was on techniques for examining the formation and stability of
these structures.
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Figure 1: The profile of u forming a mesa pattern

Instability thresholds and dynamics of mesa patterns in one spatial dimension

Consider the reaction-diffusion system

{

ut = ε2uxx + f(u,w)
0 = Dwxx + g(u,w)

(1)

We examine structures such as those seen in Figure 1, in the asymptotic regime where ε is very
small and D is exponentially large in the above system. For some fixed D, the system has a steady
state that consists of a periodic mesa pattern. In [14], we derive thresholds for D where, as we
increase D, the pattern becomes unstable. As well as deriving these thresholds, we consider how
the interfaces move in time. We derive equations to describe the dynamics of the interfaces.
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In Figure 2, we see that for a two mesa pattern, for this fixed D, the pattern is unstable in time.
As the pattern breaks down, the left-hand mesa loses mass to the right-hand mesa and forms one
mesa, which, for this D value is stable.

Figure 2: An example of coarsening: two unstable mesas degenerate to one mesa (time vs x,
x ∈ [−1, 3]; red is u = 1 and blue is u = −1)

Mesa patterns on a thin domain

Consider the analogous 2D system by considering the equivalent one dimensional problem

{

ut =
ε2

h(x) [h(x)ux]x + f(u,w)

τwt =
D

h(x) [h(x)wx]x + g(u,w)
, (2)

where h(x) is a positive function corresponding to the domain height. We again examine the
stability of mesa patterns. Here the instability comes from effects of the heterogeneous domain.
Similar thresholds are determined except now these depend on the function h(x). This work makes
up Chapter 3 of my PhD thesis.

Oscillation of mesa patterns

Consider the following system
{

ut = ε2uxx + f(u,w)
τwt = Dwxx + g(u,w)

(3)

under similar conditions as before. For some values of τ , the solution u consisting of the sharp
interfaces oscillates. This oscillation can be seen in Figure 3. Over time for a particular τ , this
oscillating solution converges to a constant amplitude as seen in Figure 4. This occurs through
a Hopf bifurcation. In [15], in order to obtain the critical value of τ where the Hopf bifurcation
occurs, we first, through asymptotic expansions, write our system as an PDE coupled with an
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Figure 3: The mesa oscillates in time (red is
u = 1 and blue is u = −1)
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Figure 4: The location of the interface (in red) in
time as well as the amplitude as predicted from
asymptotics (in blue)

ODE, then as a system of ODEs. Then, using multiple scales analysis, we determine an equation
for the amplitude of the oscillations from which we find that for τ > τc, the solution converges to
a constant amplitude [15]. This method allows us to study the dynamics well beyond the Hopf
bifurcation.

The numerical solution of (3), as seen in Figure 4, is performed using the spatial and temporal
adaptive software package BACOL (see [17],[18]). Similar results were also obtained by using the
method of lines and an ODE solver in Matlab.

Future work here consists of examining more than one mesa. A brief numerical study of this
suggests that similar behaviour occurs as was determined for one mesa.

MSc research

“The Generalized Minimal Residual Method applied to the Inverse Problem of Electrocardiography”
Abstract: The inverse problem of electrocardiography—requiring the calculation of the heart

surface potentials from the body surface potentials—presents a challenge because it is mathemati-
cally ill-posed. The currently accepted way of overcoming this is to use Tikhonov regularization. A
key component of an effective regularization method is choosing a suitable value for the regulariza-
tion parameter λ. Four commonly used methods (L-curve, CRESO, zero-crossing and discrepancy
principle) as well as the new norm summation method are examined in this work. By calculating
the optimal regularization parameter, using an a priori solution, the effectiveness of these methods
is compared. An alternative way of solving the inverse problem is using a Krylov subspace method
called the Generalized Minimal Residual (GMRES) method. This method forms an orthogonal
basis of the sequence of successive matrix powers times the initial residual. The approximations to
the solution are then obtained by minimizing the residual over the subspace formed. The GMRES
method is able to solve the inverse problem without oversmoothing the solution, so as not to lose
valuable localized electrical behaviour of the heart. The GMRES method and the Tikhonov regu-
larization are compared and it is found that they perform similarly. Using both methods (one as a
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verification of the other) may help obtain more accurate assessments of the epicardial potentials.
The work here in presented in the preprint [16].

Current Research and Future Research

The focus of my research has been on techniques for examining formation of localized structures
and especially the stability of these structures. There are many directions in which these techniques
can be extended and applied.

Extension to two spatial dimensions

The same techniques as were used in the preprint [14] can be applied to the problem (1) but in
two spatial dimensions. Here, as before, we can calculate the instability thresholds as well as the
dynamics of the interfaces (which are now two dimensional).

Extension to a three-component system

Suzuki et al [19] considered a three-component system describing two inhibitors and one activator
and showed that quasiperiodic motion of the interfaces was possible for certain parameters. By
applying the techniques of [15] to a three-component system, analogous to (3), similar amplitude
equations describing the motion of the interfaces may demonstrate spatio-temporal chaos.

Delay equations

In order to examine more complex behaviour of these mesa patterns, delay is introduced into one
of the reaction terms of (3). Again, we consider if it is possible to produce spatio-temporal chaos.
See [20, 21, 22].

Ecological/Biophysical applications

The analytical techniques in my previous work can be applied to systems that describe various
ecological/biophysical phenomena ([12], [23], [26]) that exhibit solutions consisting of patterns as
discussed. One possible avenue of research is to extend the previous techniques to models that
involve non-local interaction, such as a model for animal group formation and movement ([23], [24],
and [25]) or a model for cell aggregation and cancer invasion ([26]).

Numerical considerations

The use of numerical tools is critical to verify asymptotic results that come from analytical tech-
niques used in my previous work. Since these systems consist of partial differential equations with
small parameters and behaviour occuring at different time scales, solving numerically poses a num-
ber of difficulties. Adapting and expanding on current numerical techniques and tools is an essential
part of work in this area.
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