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Introduction
Consider the reaction-diffusion system

ut = ε2uxx + f(u, w)

wt = Dwxx + g(u, w)

whereε << 1 andD >> ε with Neumann bound-

ary conditions andx ∈ [−L, L], where

f(u, w) = −u + u2(w − u)

g(u, w) = 1 − β0u.

In particular, we consider solutions ofu with sharp

interfaces, givingmesas such as those given to the

right, and then examine the motion of these inter-

faces.
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Part A: Determining the Equation of Motion for
One Mesa
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Let u = u−(x − l−) on (−L, x0) andu = u+(x − l+) on (x0, L) wherel− andl+ are interfaces,

−L < l− < l+ < L. Assume that the interfaces move slowly in time,l− = l−(ε2t) andl+ = l+(ε2t).

The width of the mesa is a constant (due to conservation of mass). We can define

x0 =
l+ + l−

2
.

Note thatu′(x0) = 0.
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Expandu = u0 + 1
D

u1 andw = w0 + 1
D

w1. Notew0 is a constant.

On (−L, x0), we defineu0(x) = u−(x − l−) = U−

(
x−l

−

ε

)

.

Substituting the expansions in to our equations, we obtain the following

−ε2l′−u′
− = ε2u0xx + ε2 1

D
u1xx + f(u0, w0) +

1

D
fuu1 +

1

D
fww1

0 = Dw0xx + w1xx + g(u0, w0) +
1

D
guu1 +

1

D
gww1.

Multiplying by u0x, then integrating by parts gives

−εl′−

∫ ∞

−∞
(U ′

−)2ds =
ε2

D
[u′

1u
′
0 − u1u

′′
0 ]|x0

−L +
1

D
w1(l−)

∫ √
2

0

fwdU−.
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Similarly, on(x0, L), u0(x) = u+(x − l+) = U+

(
x−l+

ε

)

and we obtain

−εl′+

∫ ∞

−∞
(U ′

+)2 ds =
ε2

D
[u′

1u
′
0 − u1u

′′
0 ]|Lx0

− 1

D
w1(l+)

∫ √
2

0

fwdU+.

Sincex0 = l++l
−

2 , we add together to equations for the two interfaces to obtain:

dx0

dt
=

ε

2

1
∫ ∞
−∞(U ′(s))2 ds

{

− ε2

D

[

u′
1u

′
− − u1u

′′
−

∣
∣
x0

−L
+ (u′

1u
′
+ − u1u

′′
+)

∣
∣
L

x0

]

+
1

D
(w1(l+) − w1(l−))

∫ √
2

0

fw dU

}

.
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The boundary terms are determined to be

u′
1u

′
− − u1u

′′
−

∣
∣
x0

−L
+ u′

1u
′
+ − u1u

′′
+

∣
∣
L

x0

= 2
D

ε2
µ2

0C
2
0

(

e
µ0
ε

(−2x0+d−2L) − e
µ0
ε

(2x0+d−2L)
)

whered is the width of the mesa and is given byd =
√

2
β0

L,wherel = d/2,

fw = fw(u, w0), andµ0, C0 are constants.

As well, it is determined that

w1(l+) − w1(l−) = −2x0lg(0, w0).
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Then, the equation of motion forx0 is

dx0

dt
=

ε
∫ ∞
−∞(U ′(s))2 ds

{

µ2
0C

2
0e

µ0
ε

(d−2L)
[

e
µ0
ε

2x0 − e−
µ0
ε

2x0

]

+
1

D
[−x0lg(0, w0)]

∫ √
2

0

fw dU

}

.
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Part A: Critical Value of D
A change in stability of the equilibrium of the differentialequation,x′

0(t), occurs when

the diffusion coefficient,D, is

D = Dc =
lg(0, w0)

∫ √
2

0
fw dU

4
µ3

0

ε
C2

0+e
µ0
ε

(d−2L)

for general functionsf andg. The interfaces will move whenD > Dc.

Substituting in the constants, we obtain the equation forDc as a function ofε andL:

Dc =
1

12β0
Lε exp(

1

ε
(2 −

√
2

β0
)L).
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Part A: Numerical Simulation of Full System
For the choice of parametersε = 0.1, β0 = 1.5, L = 1, andD = 2000, the numerical simulation of the

system generates the following solutions.
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The red line denotes the initial profile of theu solu-

tion, the blue line denotes the final profile.

Blue isu = 0 and red isu =
√

2.
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Comparison ofx′
0

and Solution of Full System
For the parametersD = 2000, L = 1, ε = 0.1, andβ0 = 1.5, we plot the motion of the point where

u =
√

2

2
in time as obtained from the full numerical solution of the system (red) and from the determined

ODE,x′
0

(blue).
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Part B: Determining the Equation of Motion
Between Mesas
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We proceed now just as we did for Part A. Once more, the interfaces are denoted as

l− = l−(ε2t) andl+ = l+(ε2t).

The equation of motion forx0 where

x0 =
(l+ + l−)

2

is given by

dx0

dt
=

ε
∫ ∞
−∞(U ′(s))2 ds

{

µ2
1C

2
1e

µ1
ε

(d−2L)
(

e2
µ1
ε

x0 − e−2
µ1
ε

x0

)

+
1

D
[x0lg+]

∫ 1

−1

fw dU

}

whered is the width between interfaces (d = (
√

2β0−1)2L√
2β0

), g+ = g(
√

2, 0), l = d/2,

fw = fw(u, w0), andµ1, C1 are constants.
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Part B: Critical D Value

As we did for Part A, we obtain the following critical threshold for Part B,

Dc = − lg+

∫ √
2

0
fw dU

4
µ3

1

ε
C2

1e
µ1
ε

(d−2L)
.

Substituting in constants that related to our particular model, we have

Dc = εL
(
√

2β0 − 1)2

12β0
exp(

L

ε

√
2

β0
).
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Part B: Numerical Simulation of Full System
For the choice of parametersε = 0.1, β0 = 1.5, L = 1, andD = 2000, the numerical simulation of the

system generates the following solutions.
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The red line denotes the initial profile of theu solu-

tion, blue line denotes the final profile.

Blue isu = 0 and red isu =
√

2.
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Comparison ofx′
0

and Solution of Full System
For the parametersD = 2000, L = 1, ε = 0.1, andβ0 = 1.3, we plot the motion of the point where

u =
√

2

2
in time as obtained from the full numerical solution of the system (red) and from the determined

ODE,x′
0
, (blue).
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Dynamics of Two Mesas

Now, we consider two mesas. A similar analysis can be completed, but is much more

complicated because mass can be transferred between mesas.Also, different types of

behaviour are exhibited: two mesas move towards each other,two mesas move away

from each other, or all interfaces can move.

For some parameter choices, the threshold determined for Part B also gives the critical

value forD for two mesas.

For some other parameter choices, the analysis in Part B can not describe the behaviour

(such as two mesas moving towards each other).
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Some examples of final profiles that are not possible to obtainfrom the analysis in Part

B are given to the below (in green).
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Some of the interesting dynamics that are seen in the two mesacase includes those seen in the following

picture (x vs. t). Here, the two mesas that are seen initially (beforet = 250) are unstable, but one mesa that is

formed (aftert = 250) is stable and moves towards the center of the interval. The parameters are

D = 2000, L = 1, ε = 0.1, β0 = 1.3.
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Motion of the Interfaces for Two Mesas
Can the equation of motion determined in Part B describe the motion of the interfaces

for two mesas? Unfortunately not. As we can see from the graphs below, the interfaces

move on a completely different time scale, even though the same behaviour is exhibited.

The same parameters are used in generating both graphsD = 30, L = 0.25,ε = 0.02,

andβ0 = 2.
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Future Work
* Determine the eigenvalues and eigenfunctions associatedwith the two mesa

solution

* Describe all dynamics of the interfaces in the two mesa case

* Generalize these results forn mesas
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