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Introduction

Consider the reaction-diffusion system

2 Ugpp + f(u, w)

wy = Dwgy + g(u,w)

Ut

wheres << 1 andD >> e with Neumann bound-
ary conditions and: € [—L, L], where

flu,w) = —u+u?(w—u)

g(u,w) = 1-— Bou.

In particular, we consider solutions afwith sharp

interfaces, givingmesas such as those given to the _'1 N
right, and then examine the motion of these inter-
faces.



Part A: Determining the Equation of Motion for
One Mesa

—L

Letu =u_(x —Il_)on(—L,xzp) andu = u4(x — l4+) on(xzo, L) wherel_ andl are interfaces,
—L < 1_ <1y < L. Assume that the interfaces move slowly in tiche,= [ (2t) andly = [ (£2t).
The width of the mesa is a constant (due to conservation o§)ntée can define

B 41—
— > i

Lo

Note thatu’(zg) = 0.



Expandu = uo + 5u; andw = wy + -w;. Notew is a constant.

On (—L, o), we defineug(z) = u_(z — 1) = U_ (H— )

3

Substituting the expansions in to our equations, we obkearidllowing

1 1 1
_52l/_u/_ — 52u0xx + 525“13:9: + f(u()a wO) + Efuul + Efwwl
1 1

0 = DwO:I::U + Wige + g(’LL(), wO) + Eguul + ngwl-
Multiplying by ., then integrating by parts gives
o0 52 . 1 V2
—51’_/ (U’ )?*ds = 5 [ugug — wrugl|_r + Ewl(l_)/o fwdU_.

— 00



Similarly, on(xo, L), ug(x) = uy(x — 1) = Uy (x l+) and we obtain

el OO(U’ )2 ds = = il — w1 — (i) ﬂf dU
+ + _ D 1%0 1Ug 0 le + wHhY 4
0

— 00

Sincex, = “*'= we add together to equations for the two interfaces to nbtai

dﬂ?o E 1 52 o L
dt 2 [ (U(s))? ds {‘ 5 |l = [ 4 (s — )]

—|-11)(w1 l_|_ / f’w dU}



The boundary terms are determined to be
/
wiu —ugu” | L—i— u1u+ u1u+}$0
D 5 B0 (—2x9+d—2L) B0 (2xg+d—2L)
= 2—2,LLOCO e s —e-=

whered is the width of the mesa and is given By= fL \wherel = d/2,
fw = fuw(u,wo), andug, Cy are constants.

As well, it is determined that

wi(ly) —wi(l-) = —2x0lg(0, wp).



Then, the equation of motion faf is

dx € { 22 B0(d—2r) [ 4o —
5, — oo C € ( ) |: € 2w _ e
dt [ (U/(s)2ds V070° ‘

V2
+%[—xolg(0,w0)]/o fuw dU} .



Part A: Critical Value of D

A change in stability of the equilibrium of the differentiaduationzj,(¢), occurs when
the diffusion coefficientD, is

190, wo) [V? fu dU

4/”L_80§+6MTO(d_2L)
S

D=D.=

for general functiong andg. The interfaces will move whepb > D...

Substituting in the constants, we obtain the equatiofpoas a function ot and.L:

_ ! Ly V2
= 24, Le exp(€(2 5 )L).

D.



Part A: Numerical Simulation of Full System

For the choice of parametesrs= 0.1, Bp = 1.5, L = 1, andD = 2000, the numerical simulation of the

system generates the following solutions.
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Comparison ofr;, and Solution of Full System

For the parameter® = 2000, L = 1, = 0.1, and8y = 1.5, we plot the motion of the point where
u = @ in time as obtained from the full numerical solution of theteyn (red) and from the determined

ODE, z, (blue).
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Part B: Determining the Equation of Motion
Between Mesas
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We proceed now just as we did for Part A. Once more, the irdesfare denoted as
[_ = l_(€2t) andl+ = l_|_(€2t).
The equation of motion far, where

IS given by

dxg & 22, B (d—2L By —2k
—_ = C c ( ) ( 2 s Lo __ 2 = C130)
dt ffOOO(U/(S))2 ds {:ul 1€ & e

1
+%[$olg+]/_lfw dU}

whered is the width between interfaced & Wiﬁ%;;)“), g+ = 9(+/2,0),1 =d/2,
fuw = fuw(u,wy), anduy, C are constants.




Part B: Critical D Value

As we did for Part A, we obtain the following critical threstidor Part B,

. lg-l— f()\/§ fw dU
4”—?0126%@_2[’).

D, =

Substituting in constants that related to our particuladehowne have

(V260 — 1)? L2
o5, ST

D.=¢lL



Part B: Numerical Simulation of Full System

For the choice of parametesrs= 0.1, Bp = 1.5, L = 1, andD = 2000, the numerical simulation of the

system generates the following solutions.

1.4
6000

1.2
5000

1.0

4000
0.8

+~ 3000
0.6 —

2000
0.4 H

0.5 1000

The red line denotes the initial profile of thwesolu- Blue isu = 0 and red isu = /2.

tion, blue line denotes the final profile.



Comparison ofr, and Solution of Full System

For the parameter® = 2000, L = 1, = 0.1, and5y = 1.3, we plot the motion of the point where
u = @ in time as obtained from the full numerical solution of theteyn (red) and from the determined
ODE, z{, (blue).
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Dynamics of Two Mesas

Now, we consider two mesas. A similar analysis can be comgjdtut is much more
complicated because mass can be transferred between rAesadifferent types of
behaviour are exhibited: two mesas move towards each ofeemesas move away
from each other, or all interfaces can move.

For some parameter choices, the threshold determined foBRédso gives the critical
value forD for two mesas.

For some other parameter choices, the analysis in Part Batadescribe the behavioul
(such as two mesas moving towards each other).



Some examples of final profiles that are not possible to olftam the analysis in Part
B are given to the below (in green).
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Some of the interesting dynamics that are seen in the two nassaincludes those seen in the following

picture @ vs. t). Here, the two mesas that are seen initially (befote 250) are unstable, but one mesa that
formed (aftert = 250) is stable and moves towards the center of the interval. Bnapeters are

D =2000,L =1, = 0.1, 8, = 1.3.
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Motion of the Interfaces for Two Mesas

Can the equation of motion determined in Part B describe thtgom of the interfaces

for two mesas? Unfortunately not. As we can see from the graplow, the interfaces

move on a completely different time scale, even though theedaehaviour is exhibited

The same parameters are used in generating both giaphs0, L = 0.25,e = 0.02,

andg, = 2.
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Future Work

* Determine the eigenvalues and eigenfunctions assocwtbdhe two mesa
solution

* Describe all dynamics of the interfaces in the two mesa case

*  Generalize these results farmesas
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