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Clifford4+ T operators

The class of Clifford+ T operators is the smallest class of unitary
operators that includes the operators

w = e™*, —12<%_11)7 5:((1)?>7 T:((IJ(?)
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and is closed under composition and tensor product.



Clifford+ T operator on 2 qubits

» Notations for 2-qubit Clifford+ T operator:

To=Tol="1" T —/gT= 7

SimiIarIy for Ho, Hl, 50, 51.
» We provide a presentation in terms of generators
w, ZC7 T07 Tla H07 Hl7 507 51

and relations (main theorem) for 2-qubit Clifford4+ T operator
group.



Why do we need relations?
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» For 1-qubit Clifford+T operators ([2])

» Exact synthesis algorithm
» Matsumoto-Amano normal form (T-optimal)
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» For n-qubit Clifford+T operators
» Exact synthesis — Giles-Selinger algorithm ([1], but not
T-optimal)
» No normal form so far
» How to minimize the T-count?
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The main theorem

Theorem. The following set of relations is complete for 2-qubit
Clifford+T circuits:
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The main theorem, continued:




Clifford+T and Us(Z[J5, 1])

Theorem (Giles and Selinger, arXiv:1212.0506 [1]). The 2-qubit
Clifford+T operator group is the index 2 subgroup of U4(Z[%, i),
consisting of operators with determinant +1, +£i.

Here, U4(Z[%, i]) is the group of unitary 4 x 4 matrices with
entries in Z[%, il.



Greylyn's result

Theorem (Greylyn, [4]). The group U4(Z[%, i]) can be presented
by 16 generators

Xijys Hiprwpg (17 <j<41<k<4)

and 123 equations.

Here, wyy, and X[; jj, H;jj are one- and two-level operators, e.g.:
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Greylyn's 123 relations

(1) wB}] ~ €

(2) Hyiy ~ € (G <k

() i ~ € G<k)

(4) Wyl ~ Wiy (G # )

(5) wigHx ~ Hijwig (< k0 4].k)

(6) wig Xy ~ X pwie (G <k, 0# 7, k)

(7) HyjHpey ~ HegHyy G <k C<t {680 (5, k) =0)
(8 HigXieq ~ XpegHpy (G <k <t {0tyn{jk} =0
(©) XijaXpeq ~ XXy U<hk<t {060 {jk} = 0)
(10) Xiyetas ~ wij) X (<)

(11) Xpmwp] ~ Wi X[k (j<k)

(12) XX ~ X, g X[j.10 (j<k<i)

(13) N Xpe ~ X X (t<j<k)

(14) Mg Hy ~ Hyn X (G<k<t)

(15) XigwHieg) ~ Hypy X (<j<k)

(16)  wyew X~ Xpeepen (G<k)

a7 wyewHun & Hpgepew G<k)

(18) Hyw X ~ wigHys (G <k)

(19 HyreiyHpn  ~ ol Hyawey (i <k)

(20) HywHygHygHyey ~ HygHugHygHe (j<k<l<t)

Figure from Greylyn's master thesis arXiv:1408.6204



Proof idea of Greylyn's theorem

1. Build the Cayley graph of the group. Vertices = group
elements, edges = generators.
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Proof idea of Greylyn's theorem

1. Build the Cayley graph of the group. Vertices = group
elements, edges = generators. Cycles = relations.

2. The Giles-Selinger algorithm gives a canonical path from each
group element to the identity. This forms a spanning tree.
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Proof idea of Greylyn's theorem, continued

3. Find finitely many relations of the form

ae ———— he

|

|

o — 06— O

such that any arbitrary path can be transformed to the
equivalent canonical path. By induction on the “height” of a
and b.



Presentation of a subgroup

We have Clifford+T C U4(Z[%, i]). Greylyn's result gives us
generators and relations for the bigger group.

We face the following problem:

Problem. Let H be a subgroup of G, and suppose we have a
presentation of G by generators and relations. Can we find a
presentation of H by generators and relations?
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Presentation of a subgroup

We have Clifford+T C U4(Z[%, i]). Greylyn's result gives us
generators and relations for the bigger group.

We face the following problem:

Problem. Let H be a subgroup of G, and suppose we have a
presentation of G by generators and relations. Can we find a
presentation of H by generators and relations?

Example.
G=(AB,C|A? B2 C? (BC)3 (AC) (AB)Y
Let X = AC,Y = BA.
H=(X,Y| X% Y* (XY)3

Fortunately, there is a method for computing this.



Presentation of a subgroup

Lemma. If (Go,S) is a presentation of group G, and H = (Hp) is
a subgroup of G, and if C, f, and h are chosen as below, then
(Ho, R) is a presentation of H, where R consists of the following
relations:

(A) For each generator x € Hy, a relation x = g(f(x)) € R, and
(B) For each coset representative ¢ € C and each relation

s=teS, arelation u=v e R, where (u,d) = h(c,s), and
(v,e) = h(c,t).



C, f,and h

v

Coset representatives C

v

x € Hy — f(x), some sequence in Gy s.t. [f(x)] = x

v

Define a map (where w and d satisfy cy = [w]d)

h:Cx Gy— Hy x C
(c,y) = (w,d)

Extend hto h: C x Gy — Hog x C

v

h(C0>)/1Y2---Yn) = (W1W2...W,,, Cn)

v

Define g : éO‘[yl...yn]eH — Ho given by
g(u) = v iff A(1,u) = (v,1)



Choice of C, f, and h

» C = {1,&)[4]}
> f is defined by

x | f(x) x | f(x)

Ho | Hi131Hjo,2) Z. w[43]

Hi | HgFpogy | | w | wiowpepwpg)
So | Wiy To | wgwp)

51| Wy 1 | wiwp

» Choice of h, using the following abbreviations

Swap = ﬁ?ﬁ#g’ TH=T", CXg= HoZ.Hy

Xo = HoSoSoHo, X1 =HiS$iSiH:, ST =583 CXi=HiZH



Choice of C, f, and h

€ ‘~[4])

y h(l,y) h(wpps y)
Xo.a] | (X0CXiXo, 1) (X0 CX1 Xo, wiay)
X[U,Z] (SwapXoCX1X05wap l) (5W2pX0CX1X05W3p,oJ[4])
Xo | (CXoXoCX1X0CXo, 1) (CXoXo T CX1L T{ Xo CXo, wiap)
X2 | (CXoX1CX1X1 CXo, 1) (CXoX1 CX1 X4 CXg7w[4])
X3 | (SwapCXiSwap, 1) (SwapTy CX1T Swap, wig))
X3 | (CX1,1) (TLCX1 T, wigp)
Hoay | (XoSTH T] CXi TiHLS1 X0, 1) (XS] HL T} CX1 Ty Hy 51 X0, wia))
Hpoz2) (swapxosff-llr CXy T1H1 51 X0 Swap, 1) (swt—ﬂp><0_<sﬂ-/1 7! X T1H151X05Wap,w[4])
Hpo 3] (cxoxos HiT{ G TiHi S0 CXo,1) | (CXoXo TaSTHL T CX0 Ta o $1 T4 Xo CXo, wiay)
H[LQ] (CX0X15 H1 Tl CXl T1 H151X1 CXO ) (CX()XlSl H1 Tl CX1 T1 H151X1 C)((]7 W[4])
Hp3) | (SwapSIHy T] CXy Ty HiS1 Swap, 1) (SwapTlsTHl Ticx T1H151 T Swap, wy)
Hpay | (SIHLTI CXi TiHS1, 1) (TLS{HL T CX T HLS1 T wpgy)
wo | (CXoXo T§ CX1 T1 CX1 X0 CXo, wigp) (CXoXo ToXo CXo, 1)
Wi (SwapTT CX1 T1 CX1 Swap, wig)) (SwapToSwap, 1)
(TT CX1 T1 CXl L/J[4]) (To, 1)
(e, (

TiToCX T CXy, 1)




Reduction of equations

> Apply this lemma, we get 8 + 246 = 254 equations, all very
long.
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Reduction of equations

> Apply this lemma, we get 8 + 246 = 254 equations, all very
long.
> We already know some “obvious” equations:

» All Clifford equations
» Obvious Clifford+T equations

TT = S
(THSSH)?? = w

= I
-

» After automatic reduction, we have 40 left

» After manual reduction, we have 3 left






Sketch of the automated reduction

Following Gosset, Kliuchnikov, Mosca, and Russo ([3]), we define,
for any Pauli operators P, Q:
14w 1—w

R(P® Q) = 5 | + 5 (P® Q).
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Then every Clifford+ T operator can be written (not uniquely) as
R(P1® @) - R(Pr® Qk) C

where P;, Q; are Pauli and C is Clifford.



Sketch of the automated reduction

Following Gosset, Kliuchnikov, Mosca, and Russo ([3]), we define,
for any Pauli operators P, Q:
14w 1

R(P® Q)= ——1+ ;w(P®Q).

Then every Clifford+ T operator can be written (not uniquely) as
R(P1® @) - R(Pr® Qk) C

where P;, Q; are Pauli and C is Clifford. We can use the “obvious”
equations to convert any Clifford+ T operator to this form. Also,
R(P® Q) and R(P' ® Q") commute iff P® Q and P’ ® Q'
commute. Using these techniques, most of the 254 equations can
be automatically proven.



This concludes the proof of the main theorem!

Theorem. The following set of relations is complete for 2-qubit
Clifford+T circuits:

Clifford equations [5]
TT =S
(THSSH)? = w
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