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Abstract. The wavelet group and wavelet representation associated with shifts coming
from a two dimensional crystal symmetry group Γ and dilations by powers of 3, are defined
and studied. The main result is an explicit decomposition of this 3Γ-wavelet representation
into irreducible representations of the wavelet group. Because we prove that the 3Γ-wavelet
representation is multiplicity free, this direct integral decomposition is essentially unique.

1. Introduction

In [17] and [10], the classical concept of wavelets on Rn was modified by replacing shifts by
points from a lattice in Rn with “shifts” by the isometries from a crystal symmetry group,
Γ. In this generalization, the dilation matrix A must be compatible with the action of Γ.
For γ ∈ Γ, let R(γ) denote the unitary shift operator on the Hilbert space L2(Rn) defined
by R(γ)f(y) = f(γ−1 · y), for all y ∈ Rn and f ∈ L2(Rn). Here γ−1 · y denotes the result of
shifting y by the isometry γ−1. When Γ is the smallest crystal symmetry group consisting of
translations by elements of Zn, then R gives the classical shifts. The dilation unitary, DA,
is given by DAf(y) = | det(A)|1/2f(Ay), for all y ∈ Rn and f ∈ L2(Rn). The purpose of
the present paper is to initiate a study of the operator algebraic and group representational
structures of G(A,Γ), the smallest group of unitary operators containing both DA and R(Γ),
in the case where Γ is a wallpaper group; that is, a symmetry group of a two dimensional
crystal. We take the point of view, that G(A,Γ) is the image of a unitary representation of
a particular group we define in section 2.

This paper partly generalizes [16], where such a study was carried out when the shifts
were from the integer lattice, Zn. In that case, the corresponding representation was shown
to be unitarily equivalent to an explicit direct integral of irreducible representations. The
parameter space for the direct integral can be taken to be a wavelet set in the sense of [3] and
[4]. In [20], [21], and [22], wavelet sets with very simple geometric structure (a finite union
of convex sets) are constructed for increasingly more general dilation matrices. The abstract
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group being represented is not a Type I group. Thus, representations of this group need
not have a unique direct integral decomposition into irreducible representations in general
([19]). So, it was interesting that its natural representation on L2(Rn) could be shown to
multiplicity free, and could be so nicely decomposed into irreducibles. See [2], [5], [6], and
[7] for works partially motivated by the direct integral decomposition obtained in [16].

Although much of what we do below can be carried out in arbitrary dimensions, we restrict
ourselves to the two dimensional case where computational details are more manageable. We
also note that the analog of simple wavelet sets for shifts by a crystal symmetry group have
recently been constructed, see [23], for all two dimensional crystal groups and an appropriate
dilation matrix. Besides restricting to two dimensions, we further reduce notational details
by using dilation by 3, which is compatible with all wallpaper groups, in all cases.

After introducing our notation and basic definitions in Section 2, we construct a particular
semi-direct product group, denoted Γ3 oϑ Z, and at the end of Section 2 and in Section 3
we define the 3Γ-wavelet representation of Γ3 oϑ Z and show that this representation is
multiplicity free, i.e. has an abelian commutant. It thus can be uniquely decomposed into a
direct integral of irreducible representations. This is the unitary representation whose image
is G(A,Γ), where the matrix A dilates by 3. In Section 4, we give an explicit construction of
a family of irreducible unitary representations of Γ3oϑZ. In the final section, we display the
3Γ-wavelet representation of Γ3 oϑ Z as the direct integral of the irreducible representations
constructed in Section 4.

Acknowledgments: The third author was supported by an individual grant from the
Simons Foundation (# 316981). We thank the anonymous referees for helpful suggestions
and remarks.

2. Notation and Basic Results

We have selected notation to emphasize the central role of the natural unitary represen-
tation of the group of affine transformations of Rn and so that, as much as possible, we are
consistent with the notation of [17] and [16].

Let n ∈ N and let GLn(R) denote the group of invertible linear transformations of Rn. Let
id denote the identity in GLn(R). For any x ∈ Rn and L ∈ GLn(R), define the transformation
[x, L] of Rn by

[x, L]z = L(z + x), for all z ∈ Rn.
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Let Aff(Rn) = {[x, L] : x ∈ Rn, L ∈ GLn(R)}. Under composition as group product, Aff(Rn)
is the group of all invertible affine transformations of Rn. Note that, for [x, L], [y,M ] ∈
Aff(Rn),

[x, L]
(
[y,M ]z

)
= L

(
M(z + y) + x

)
= LM

(
z + (M−1x+ y)

)
= [M−1x+ y, LM ]z,

for all z ∈ Rn. Thus, [0, id] is the identity in Aff(Rn),

[x, L][y,M ] = [M−1x+ y, LM ], and [x, L]−1 = [−Lx, L−1].

We note that the action of Aff(Rn) on Rn provides a natural unitary representation of
Aff(Rn) on L2(Rn), which we will denote by R regardless of the dimension n. That is, for
[x, L] ∈ Aff(Rn) and g ∈ L2(Rn),

(1) R[x, L]g(y) = | det(L)|−1/2g
(
[x, L]−1y

)
) = | det(L)|−1/2g(L−1y − x), for all y ∈ Rn.

We will refer to R as the natural representation.

Let Trans(Rn) = {[x, id] : x ∈ Rn}, the normal subgroup of Aff(Rn) consisting of pure
translations. Define q : Aff(Rn) → GLn(R) by q[x, L] = L, for all [x, L] ∈ Aff(Rn). Then q
is a homomorphism onto GLn(R) with ker(q) = Trans(Rn). We note that the restriction of
the natural representation R to Trans(Rn) gives us the usual translation unitaries. That is,
if x ∈ Rn, then R[x, id] = Tx, where Txf(y) = f(y − x), for all y ∈ Rn and f ∈ L2(Rn).

Let On denote the group of orthogonal transformations of Rn and let Iso(Rn) denote the
subgroup of Aff(Rn) consisting of all affine transformations of the form [x, L], with x ∈ Rn

and L ∈ On. These are the rigid motions of Rn. An n-dimensional crystal group is a
discrete subgroup Γ of Iso(Rn) such that the quotient space Rn/Γ is compact. We refer to a
2-dimensional crystal group as wallpaper group. We will restrict our attention to wallpaper
groups from now on.

Let Γ be a fixed wallpaper group. Let N = Trans(R2) ∩ Γ, the pure translations in Γ.
Then N is a normal subgroup of Γ. There are two linearly independent vectors u, v ∈ R2

such that N = {[ju + kv, id] : (j, k) ∈ Z2}. Therefore N is isomorphic to the lattice
NΓ = {ju+ kv : (j, k) ∈ Z2} in R2 and, hence, isomorphic to Z2. Let

D = q(Γ) = {L ∈ O2 : [x, L] ∈ Γ, for some x ∈ R2}.

Then D is a finite subgroup of O2 called the point group of Γ. There are 10 possibilities for D
and they separate into two types depending on whether or not the group contains a reflection.
If there is no reflection, then D is either the trivial group or generated by a rotation of order
2, 3, 4, or 6. Let ρ(θ) denote rotation through the angle θ. If k ∈ {1, 2, 3, 4, 6}, then the
cyclic group of order k is Ck = {ρ(2π/k) j : 0 ≤ j ≤ k − 1}. Note that C1 is the trivial



4 LAWRENCE W. BAGGETT, KATHY D. MERRILL, JUDITH A. PACKER, AND KEITH F. TAYLOR

group. If D contains a reflection S about some one dimensional subspace of R2, then there
is a k ∈ {1, 2, 3, 4, 6} such that

D = Dk = {ρ(2π/k) j : 0 ≤ j ≤ k − 1} ∪ {ρ(2π/k) jS : 0 ≤ j ≤ k − 1}.
For proofs of these standard facts about wallpaper groups, see [1],[8],[24].

If we denote the restriction of q to Γ by q again, then q is a homomorphism of Γ onto D
and ker(q) = N . Thus D is isomorphic with Γ/N . If [0, L] ∈ Γ, for all L ∈ D, then Γ is
called symmorphic. Otherwise, Γ is nonsymmorphic and there is no subgroup of Γ with the
property that q restricted to that subgroup is an isomorphism with D. In either case, we
define

D0 = {L ∈ O2 : [0, L] ∈ Γ},
and note that Γ is symmorphic exactly when D0 = D.

We draw particular attention to the wallpaper group denoted pg. This group is generated
by {[u, id], [v, id], [(1/2)v, S]}, where S ∈ O2 is reflection in the line determined by multiples
of v. The group pg has a rectangular lattice [24], so we can assume that u and v are along
the horizontal and vertical axes respectively, so that [(1/2)v, S] moves up by one half of a
vertical translation unit and reflects about the vertical axis. This is called a glide-reflection.
We have

pg = {[ju+ kv, id] : (j, k) ∈ Z2}
⋃{[

ju+

(
k +

1

2

)
v, S

]
: (j, k) ∈ Z2

}
.

Note that pg is nonsymmorphic as [0, S] /∈ pg, and that here we have D = {id, S}, while
D0 = {id}.

For a general wallpaper group Γ, we will be interested in

TΓ = {x ∈ R2 : [x, L] ∈ Γ, for some L ∈ D},
and also, for each L ∈ D,

TLΓ = {x ∈ R2 : [x, L] ∈ Γ}.

If Γ is symmorphic, then TΓ = {ju+ kv : (j, k) ∈ Z2}, a lattice in R2. However, there are
four nonsymmorphic wallpaper groups. They are pg, pmg2, pgg2, and p4mg in a standard
notation scheme (see e.g. [24] or [27]). For each of these, extra elements are added to the
lattice to form TΓ, as described in the following lemma.

Lemma 2.1. If Γ is a nonsymmorphic wallpaper group and u, v ∈ R2 are such that N =
{[ju+ kv, id] : (j, k) ∈ Z2}, then

(1) u ⊥ v, so we may assume u = (1, 0) and v = (0, 1).
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(2) There exists a z ∈ R2 such that T SΓ =
{
ju+ kv + 1

2
z : (j, k) ∈ Z2

}
, where S is reflec-

tion in the vertical axis. If Γ is either pg or pmg2, we can take z = v; if Γ is either
pgg2 or p4mg, we can take z = u+ v.

(3) For L ∈ D, L 6= S, TLΓ = {ju+ kv : (j, k) ∈ Z2}

Proof. See, e.g.[24]. �

Let A ∈ GL2(R). We say A is compatible with Γ if all eigenvalues of A have absolute
value larger than 1 (that is, A is a dilation matrix), [0, A]Γ[0, A]−1 ⊆ Γ (in which case
[0, A]Γ[0, A]−1 is a subgroup of Γ), and Γ/[0, A]Γ[0, A]−1 is finite. Let [x, L] ∈ Γ. Then

[0, A][x, L][0, A]−1 = [x,AL][0, A−1] = [Ax,ALA−1].

By looking at the second component in the above calculation, we see that A compatible
with Γ means ADA−1 ⊆ D. Thus, since conjugation by A is one-to-one and D is finite,
ADA−1 = D. Taking L = id in the calculation gives that ANΓ ⊆ NΓ ⊆ A−1NΓ. Finally,
since all eigenvalues of A have absolute value greater than 1, we have that ∩∞k=1A

kNΓ = {0}
and ∪∞k=1A

−kNΓ is dense in R2.

Remark 2.2. If A ∈ GL2(R) is compatible with Γ, then applying the natural representation,
given by (1), to [0, A] gives R[0, A]g(y) = | det(A)|−1/2g(A−1y), for y ∈ R2, g ∈ L2(R2). That
is, R[0, A] = DA−1 in the notation of [16]. Recall, for x ∈ NΓ, R[x, id]g(y) = g(y − x), for
y ∈ R2, g ∈ L2(R2). Thus, R(Γ) ∪ {R[0, Ak] : k ∈ Z} contains all the shifts by vectors in the
lattice NΓ and dilations by powers of A.

Definition 2.3. If Γ is a wallpaper group and A ∈ GL2(R) is compatible with Γ, let G(A,Γ)
denote the smallest group of unitary operators on L2(R2) containing R[0, A] and the set
R(Γ).

If H is a Hilbert space, B(H) denotes the Banach algebra of bounded linear operators on
H. For S ⊆ B(H), the commutant of S is S ′ = {B ∈ B(H) : BS = SB, ∀S ∈ S}. For later
use, we record an observation on the commutant of G(A,Γ).

Proposition 2.4. The commutant of G(A,Γ) in B
(
L2(R2)

)
is abelian.

Proof. In the notation of [16], G(A,Γ) contains the {DA, Tv
∣∣ v ∈ NΓ}, so G(A,Γ)′ is contained

in {DA, Tv
∣∣ v ∈ NΓ}′. This latter set is abelian by equation (2) in [16], after implementing

the unitary equivalence given by the Fourier transform. �
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3. The 3Γ-wavelet representation

With the goal of understanding G(A,Γ) better, we take a closer look at the subgroup of
Aff(R2) generated by [0, A] and Γ. For each ` ∈ Z, [0, A]`Γ[0, A]−` is a subgroup of Aff(R2)
and

· · · ⊆ [0, A]2Γ[0, A]−2 ⊆ [0, A]1Γ[0, A]−1 ⊆ Γ ⊆ [0, A]−1Γ[0, A]1 ⊆ [0, A]−2Γ[0, A]2 ⊆ · · · .
Let ΓA = ∪`∈Z[0, A]`Γ[0, A]−` = ∪∞m=1[0, A]−mΓ[0, A]m. Then ΓA is a countable subgroup
of Aff(Rn) such that, if [x, L] ∈ ΓA, then L ∈ D. Let NA = Trans(R2) ∩ ΓA, the pure
translations in ΓA. There are two subsets of R2 that are of particular interest to us. Let
TΓA = {x ∈ R2 : [x, L] ∈ ΓA, for some L ∈ D}. Finally, let NΓA = {x ∈ R2 : [x, 0] ∈ NA} =
∪∞k=1A

−kNΓ.

Proposition 3.1. Let Γ be a wallpaper group and let A ∈ GL2(R) be compatible with Γ.
Then

(1) NA is a normal subgroup of ΓA.
(2) q(ΓA) = D.
(3) ΓA/NA is isomorphic to D.
(4) Both NΓA and TΓA are dense in R2.

Proof. (1) and (2) are immediate since Trans(R2) is a normal subgroup of GL2(R). Since
NA = {[x, L] ∈ ΓA : q[x, L] = id} and q is a homorphism onto D when restricted to ΓA,
(3) follows. As observed above, NΓA = ∪∞k=1A

−kNΓ is dense in R2. Thus TΓA is dense as
well. �

In what follows, we will restrict our attention to compatible A in the center of GL2(R). This
significantly simplifies calculations. For any d ∈ N, d ≥ 2, A = d·id is compatible with each of
the symmorphic wallpaper groups, because ALA−1 = L, and A(ju+kv) = (dj)u+(dk)v ∈ TLΓ
for each L ∈ D and all ju + kv ∈ TΓ. However, as we will see in the proof of Proposition
3.2, d must be odd for A to be compatible with a nonsymmorphic group.

Proposition 3.2. Let A = d · id, with d ∈ N odd. Then A is compatible with all 17 of the
wallpaper groups.

Proof. Since for any [x, L] ∈ Γ where Γ is any wallpaper group, we have ALA−1 = L, we
need only verify Ax ∈ TLΓ for all [x, L] ∈ Γ. This is clearly true if x is of the form ju + kv,
with (j, k) ∈ Z2. The other possibility for [x, L] is [ju + kv + 1

2
z, S] with (j, k) ∈ Z2, where

z = v or z = u + v, and S is reflection in the vertical axis. In either case, since d is odd,
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Ax = dju+ dkv+ d
2
z is of the form j′u+ k′v+ 1

2
z with (j′, k′) ∈ Z2, and thus is in T SΓ . Note

that for d even, Ax is of the form j′u+ k′v, with (j′, k′) ∈ Z2, which is not in T SΓ . �

To further simplify, we will work with the smallest available d; from now on A = 3 · id.
There would be no meaningful change in the following if 3 is replaced by any odd integer
greater than 1. To acknowledge that A = 3 · id from now on ΓA,NA, NΓA and TΓA are written
as Γ3,N3, NΓ3 and TΓ3 , respectively.

We can use conjugation by [0, 3 · id] to define an action ϑ of Z on Γ3. For ` ∈ Z, ϑ` is
defined on Γ3 by ϑ`[x, L] = [0, 3 · id]−`[x, L][0, 3 · id]` = [3−`x, L], for all [x, L] ∈ Γ3. We then
form the semi-direct product group

Γ3 oϑ Z = {
(
[x, L], `

)
: [x, L] ∈ Γ3, ` ∈ Z},

equipped with group product

(2)
(
[x, L], `

)(
[y,M ],m

)
=
(
[x, L](ϑ`[y,M ]), `+m

)
=
(
[M−1x+ 3−`y, LM ], `+m

)
.

Note that
(
[x, L], `

)−1
=
(
[−3`Lx, L−1],−`

)
, for

(
[x, L], `

)
∈ Γ3 oϑ Z. We will identify Γ3

with {
(
[x, L], 0

)
: [x, L] ∈ Γ3}, a normal subgroup of Γ3 oϑ Z. Likewise, we identify N3 with

its copy inside Γ3 oϑ Z.

Proposition 3.3. N3 is a normal subgroup of Γ3 oϑ Z and Γ3 oϑ Z/N3 is isomorphic to
D × Z.

Proof. Considering N3 as a normal subgroup of Γ3 for the moment we have, for any ` ∈ Z,
ϑ`[x, id] = [3−`x, id] ∈ N3, for any [x, id] ∈ N2. This means N3 is also normal in the semi-
direct product Γ3 oϑ Z. The map Q defined by Q

(
[x, L], `

)
= (L, `) is a homomorophism

of Γ3 oϑ Z onto D × Z and ker(Q) = N3. This shows that Γ3 oϑ Z/N3 is isomorphic to
D × Z. �

We will need to factor elements of Γ3 oϑ Z in a particular manner. Although this is just
an observation, we state it as a lemma for future reference.

Lemma 3.4. For
(
[x, L], `

)
∈ Γ3 oϑ Z, we have(

[x, L], `
)

=
(
[0, id], `

)(
[3`x, L], 0

)
.

Proposition 3.5. Let Γ be a wallpaper group and let Γ3, N3 and TΓ3 be as defined above.
The following hold:

(1) N3 =
{[(

j
3`

)
u+

(
k
3`

)
v, id

]
: (j, k) ∈ Z2, ` = 0, 1, 2, · · ·

}
.
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(2) If Γ is symmorphic, then TΓ3 = {x ∈ R2 : [x, id] ∈ N3}.
(3) If Γ is nonsymmorphic, then

TΓ3 =
⋃∞
`=0

( {(
j
3`

)
u+

(
k
3`

)
v : (j, k) ∈ Z2

}
∪
{(

j
3`

)
u+

(
k
3`

)
v +

(
1
2

)
z : (j, k) ∈ Z2

} )
,

where z is the vector identified in Lemma 2.1.

Proof. (1) and (2) are clear, so we consider (3). For each integer ` ≥ 0, let

T` = {x ∈ R2 : [x, L] ∈ [0, 3 · id]−`Γ[0, 3 · id]`, for some L ∈ D}.

We show that

(3) T` =

{(
j

3`

)
u+

(
k

3`

)
v,

(
j

3`

)
u+

(
k

3`

)
v +

(
1

2

)
z : (j, k) ∈ Z2

}
,

for each ` ≥ 0, by induction. When ` = 0, T0 = TΓ and the claim holds by the choice
of z. Suppose the claim holds for some ` ≥ 0. For any x ∈ T`+1, there exists L ∈ D
such that [x, L] ∈ [0, 3 · id]−`−1Γ[0, 3 · id]`+1. Thus, [3x, L] = [0, 3 · id][x, L][0, 3 · id]−1 ∈
[0, 3 · id]−`Γ[0, 3 · id]`. By the inductive hypothesis, either 3x =

(
j
3`

)
u +

(
k
3`

)
v or 3x =(

j
3`

)
u+
(
k
3`

)
v+
(

1
2

)
z, for some (j, k) ∈ Z2. Thus, we have that either x =

(
j

3`+1

)
u+
(

k
3`+1

)
v

or x =
(

j
3`+1

)
u+

(
k

3`+1

)
v+

(
1
6

)
z, for some (j, k) ∈ Z2. The first alternative is of the correct

form. If x =
(

j
3`+1

)
u +

(
k

3`+1

)
v +

(
1
6

)
z, for some (j, k) ∈ Z2, we need to consider the two

possibilities for z. Either z = v or z = u+ v. We note that 1
6

= 1
2
− 3`

3`+1 . So

x =

(
j

3`+1

)
u+

(
k − 3`

3`+1

)
v +

(
1

2

)
z, if z = v,

and

x =

(
j − 3`

3`+1

)
u+

(
k − 3`

3`+1

)
v +

(
1

2

)
z, if z = u+ v.

Thus, Equation (3) holds for all integers ` ≥ 0, and this verifies Condition (3) of the Pro-
postion. �

Although we will not use the following facts, it is interesting to note that x → [x, id]
embeds TΓ3 as a dense subgroup of Trans(R2) in which N3 is an index two subgroup. Notice
also that N3 is exactly the intersection of this larger subgroup of Trans(R2) with Γ3.

In the theory of wavelets with crystal symmetries as “shifts” as developed in [17] the role
of the translation unitaries is replaced by R[x, L], with [x, L] ∈ Γ. Therefore, the wavelet
representation defined in equation (1) of [16] generalizes to the following map of Γ3oϑZ into
the unitary group of L2(R2).
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Definition 3.6. The 3Γ-wavelet representation is the map V of Γ3 oϑ Z into the group of
unitary operators on L2(R2) defined by, for

(
[x, L], `

)
∈ Γ3 oϑ Z,

V
(
[x, L], `

)
= R[x, L]D `

3 ,

where D3g(y) = 3g(3y), for y ∈ R2 and g ∈ L2(R2).

Proposition 3.7. Let Γ be a wallpaper group and let A = 3 · id. Then the 3Γ-wavelet
representation is a faithful unitary representation of Γ3 oϑ Z on L2(R2). Moreover,

V
(
Γ3 oϑ Z

)
= G(A,Γ).

Proof. Direct computation shows that, for any [y,M ] ∈ Γ3,

(4) D3R[y,M ] = R[3−1y,M ]D3.

Using this repeatedly, we have, for
(
[x, L], `

)
,
(
[y,M ],m

)
∈ Γ3 oϑ Z,

V
(
[x, L], `

)
V
(
[y,M ],m

)
= R[x, L]D `

3R[y,M ]Dm
3 = R[x, L]R[3−`y,M ]D `+m

3 .

ButR is a homomorphism, soR[x, L]R[3−`y,M ] = R
(
[x, L][3−`y,M ]

)
= R[M−1x+3−`y, LM ]

and, thus, V
(
[x, L], `

)
V
(
[y,M ],m

)
= R[M−1x+ 3−`y, LM ]D `+m

3 . Using (2), we see that V
is a homomorphism of Γ3 oϑZ into the unitary group of L2(R2). It is clear that the image of
V is the smallest group of unitary operators on L2(R2) containing R[0, A] = D−1

3 and the set
R(Γ). That is, the image of Γ3 oϑ Z under V is G(A,Γ). Note that, for

(
[x, L], `

)
∈ Γ3 oϑ Z,

if R[x, L]D `
3 is the identity operator, then R[x, L] = D−`3 , from which one can verify that

x = 0, L = id, and ` = 0. This implies V is faithful. �

It will be useful to convert V to an equivalent representation V̂ using the Fourier transform.
We use the following form of the Fourier transform. For g ∈ L1(R2),

F(g)(ω) = ĝ(ω) =

∫
R2

g(x)e−2πi〈x,ω〉dx, for all ω ∈ R2.

For
(
[x, L], `

)
∈ Γ3 oϑZ, let V̂

(
[x, L], `

)
= FV

(
[x, L], `

)
F−1. A direct computation provides

an explicit formula for V̂ .

Proposition 3.8. For any
(
[x, L], `

)
∈ Γ3 oϑ Z and any h ∈ L2(R2),

V̂
(
[x, L], `

)
h(ω) = 3−`e−2πi〈x,L−1ω〉h(3−`L−1ω), for all ω ∈ R2.

Our primary goal is to decompose V̂ as a direct integral of irreducible representations that
we describe in the next section. Note that Proposition 3.7 combined with Proposition 2.4

implies that the representation V̂ is multiplicity-free. Thus the direct integral decomposition
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into irreducibles constructed in the next section will be essentially unique ([19], Theorem, p.
117).

4. A family of irreducible representations of Γ3 oϑ Z

The components in our decomposition of the 3Γ-wavelet representation will be certain
irreducible representations of Γ3 oϑ Z each of which is induced from a character of N3.

The normal subgroup N3 is a countable discrete abelian group. Its dual, N̂3, is a compact

abelian group. There is a distinguished subset of N̂3 consisting of restrictions of continuous
characters of R2 to N3, then moved to N3. For each ω ∈ R2, define χω : N3 → T by

χω
(
[x, id], 0

)
= e−2πi〈x,ω〉, for all

(
[x, id], 0

)
∈ N3.

Because N3 is dense in R2, χω = χω′ if and only if ω = ω′, for ω, ω′ ∈ R2.

Proposition 4.1. The map ω → χω is a continuous one-to-one homomorphism of R2 onto

a dense subgroup of N̂3.

Proof. The facts that ω → χω is one-to-one and a homomorphism are obvious. Since N3 is

being considered with the discrete topology, the topology of N̂3 is the topology of pointwise

convergence, so continuity is easy. Let Ω = {χω : ω ∈ R2}, a subgroup of N̂3. For any
[x, id] ∈ N3, if [x, id] 6= [0, id], then there exists ω ∈ R2 such that χω[x, id] 6= 1. Thus, the

annihilator of Ω in N3 is {[0, id]}, which means that the double annihilator is N̂3. But the

double annihilator is Ω, see [11]. This shows that Ω is dense in N̂3. �

Thus, we can think of Ω as a copy of R2 equipped with a weaker topology sitting densely

in N̂3.

We will now induce the characters in Ω to Γ3 oϑ Z. There are several different versions
of induced representations that can all be shown to be unitarily equivalent to one another.
Here we use the version given in [15] Chapter 2 and in [9] Chapter 6.1, Remark 2, p. 155.
The basis for these descriptions appeared in [18].

This general definition for induced representations applies to a representation π, acting
in the Hilbert space Hπ, of a closed subgroup H of a locally compact group G. In general,
the definition involves the Radon-Nikodym derivative λ for a quasi-invariant measure under
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the left action of G on G/H. The induced representation acts in a Hilbert space of square
integrable functions f : G 7→ Hπ satisfying f(xh) = π(h−1)(f(x)) ∀h ∈ H, by

Uπ(x)(f)(y) =
√
λ(x−1, yH)f(x−1y),

for x, y ∈ G. We are interested in the following special case:

Definition 4.2. For each χω ∈ Ω, let Uω = IndΓAoϑZ
NA χω, the representation of Γ3 oϑ Z

induced from the representation χω of N3.

Since Γ3 oϑ Z is discrete N3 is an open subgroup. Also, the χω are one dimensional
representations of N3. This makes inducing easier, with details for inducing from an open
subgroup worked out in [15], Section 2.1. We will provide an explicit formula for Uω below.
However, both to develop the form we need, and to determine which Uω are irreducible and
when two of them are equivalent, we first need to understand the action of Γ3oϑZ/N3 = D×Z
on N̂3.

Elements of Γ3oϑZ act on the normal subgroupN3 by conjugation. That is, for
(
[x, L], `

)
∈

Γ3 oϑ Z and
(
[y, id], 0

)
∈ N3,(

[x, L], `
)
·
(
[y, id], 0

)
=
(
[x, L], `

)(
[y, id], 0

)(
[x, L], `

)−1

=
(
[x+ 3−`y, L], `

)(
[−3`Lx, L−1],−`

)
=
(
[3−`Ly, id], 0

)
.

As expected, this action only depends on the coset of N3 containing
(
[x, L], `

)
. Thus, it is

actually an action of D × Z. We write (L, `) · [y, id] = [3−`Ly, id], for each (L, `) ∈ D × Z
and

(
[y, id], 0

)
∈ N3. This then determines an action of D × Z on N̂3. For (L, `) ∈ D × Z

and χ ∈ N̂3, define (L, `) · χ ∈ N̂3 by

((L, `) ·χ)
(
[y, id], 0

)
= χ

(
(L−1,−`) · ([y, id], 0)

)
= χ

(
[3`L−1y, id], 0

)
, for all,

(
[y, id], 0

)
∈ N3.

If ω ∈ R2, then (L, `) · χω = χ(3`L−1)tω. Note that (3`L−1)t = 3`L, since D ⊆ O2. Thus,

(L, `) · χω = χ3`Lω, for (L, `) ∈ D × Z, and Ω is invariant under the action of D × Z on N̂3.
To understand the orbit structure in Ω under the action of D×Z, it suffices to describe the
orbit structure in R2 under the action of D×Z. For each ω ∈ R2, let D(ω) = {Lω : L ∈ D},
(D × Z)(ω) = {3`Lω : (L, `) ∈ D × Z} and Dω = {L ∈ D : Lω = ω}. We call D(ω) a
D-orbit, (D × Z)(ω) a (D × Z)-orbit and Dω the stability subgroup of ω in D. Note that the
stability subgroup of ω in D × Z is {(L, 0) : L ∈ Dω}. The following proposition is a result
of Theorem 2.6 and Proposition 2.8 of [15].

Proposition 4.3. Let ω, ω′ ∈ R2. Then Uω is irreducible if and only if Dω = {id} and Uω′

is equivalent to Uω if and only if (D × Z)(ω′) = (D × Z)(ω).

For any X ⊆ R2 and (L, `) ∈ D × Z, let 3`LX = {3`Lω : ω ∈ X}.
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Definition 4.4. A subset X of R2 is called a weak 3D-cross-section if
(a) X is Borel.
(b) For (L, `), (M,m) ∈ D × Z, (L, `) 6= (M,m) implies

(
3`LX

)
∩
(
3mMX

)
= ∅.

(c) m(R2\ ∪(L,`)∈D×Z 3`LX) = 0, where m denotes Lebesgue measure on R2.

Note that if X is a weak 3D-cross-section, then ∪(L,`)∈D×Z3`LX will be dense in R2.

Proposition 4.5. Let D be the point group of a wallpaper group Γ. Then a weak 3D-cross-
section exists.

Proof. If D = Ck, for some k ∈ {1, 2, 3, 4, 6}, then Dω is trivial, for all ω 6= 0. Let Y =
{(r, 0) : r ∈ R, r > 0} and Z = ∪{ρ(θ)ω : ω ∈ Y, 0 < θ < 2π

k
}. Then, for each ω ∈ R2, ω 6= 0,

D(ω) ∩ (Y ∪ Z) is a singleton. On the other hand, if D contains a reflection, then, with Y
as just defined, there exist 0 ≤ θ1 < θ2 < 2π such that {ρ(θ)ω : ω ∈ Y, θ1 ≤ θ ≤ θ2} contains
exactly one member from each nonzero D-orbit in R2. In particular, if D = Dk contains a
reflection in the line determined by (cos θ, sin θ), as well as rotations by multiples of 2π

k
, then

θ1 can be taken to be θ, and θ2 to be θ + π
k
. Moreover, if Z = {ρ(θ)ω : ω ∈ Y, θ1 < θ < θ2},

then Dω is trivial for each ω ∈ Z. In either case, Z is open, ∪L ∈ DLZ is dense in R2 and
LZ ∩MZ = ∅, if L 6= M . Moreover, ω ∈ Z implies rω ∈ Z, for all r > 0. If ‖ · ‖ denotes the
Euclidean norm on R2, let

X = {ω ∈ Z : 1 ≤ ‖ω‖ < 3}.
Then X is Borel, 3`X ∩ 3mX = ∅, for ` 6= m, and one easily checks that m(R2\ ∪(L,`)∈D×Z
3`LX) = 0. Therefore, X is a weak 3D-cross-section. �

One interesting source of weak 3D-cross-sections are 3Γ-wavelet sets, that is, Borel sets
W ⊆ R2 such that the characteristic function 1W is the Fourier transform of an AΓ-wavelet,
where A = 3 · id. To be the Fourier transform of an AΓ-wavelet, this characteristic function
must be orthogonal to its dilates by nontrivial powers of A as well as to its transformations
by elements of FΓF−1. The characteristic function must also have the property that dilates
of these transformations form an orthonormal basis for L2(R2). These properties are easily
seen to imply conditions (b) and (c) of Definition 4.4. This is discussed further in [23], where
AΓ-wavelet sets are shown to exist for all wallpaper groups and all integer dilations.

Let us briefly recall the concept of weak equivalence for sets of unitary representations. Let
G be a locally compact group and let C∗(G) denote the group C∗-algebra of G. See Section
7.1 of [9] for basic information on C∗(G). Any unitary representation π of G determines a
unique nondegenerate ∗-representation, also denoted π, of C∗(G). This correspondence of
representations preserves irreducibility and equivalence. For a unitary representation π of
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G, Ker(π) denotes the kernel of π as a nondegenerate ∗-representation of C∗(G), a closed
∗-ideal in C∗(G).

Definition 4.6. Let S and T be sets of unitary representations of a locally compact group
G. We say that S and T are weakly equivalent if

∩{Ker(σ) : σ ∈ S} = ∩{Ker(τ) : τ ∈ T }.

If π is a single unitary representation of G and S is weakly equivalent to {π}, then we simply
say S is weakly equivalent to π.

Theorem 4.7. Let Γ be a wallpaper group with point group D. If X is a weak 3D-cross-
section, then {Uω : ω ∈ X} is weakly equivalent to the left regular representation of Γ3 oϑ Z.

Proof. Recall from Proposition 4.1 that Ω = {χω : ω ∈ R2} is dense in N̂3. Thus, the set

ΩX = {χω : ω ∈ ∪(L,`)∈D×Z3`LX} is dense in N̂3.

This implies that the left regular representation of N3 is weakly equivalent to ΩX . Now
apply Corollary 5.41 of [15] to conclude that the left regular representation of Γ3 oϑ Z is
weakly equivalent to {Uω : ω ∈ ∪(L,`)∈D×Z3`LX}. But, for every ω ∈ ∪(L,`)∈D×Z3`LX, there

exists an ω′ ∈ X so that Uω′ ∼ Uω. This means that the left regular representation of
Γ3 oϑ Z is weakly equivalent to {Uω : ω ∈ X}. �

Remark 4.8. Since Γ3 oϑ Z is amenable (see, for example, [26]), the left regular represen-
tation is a faithful representation of C∗(Γ3 oϑ Z) by Hulanicki’s Theorem [12]. Therefore, if
X is a weak 3D-cross-section, then {Uω : ω ∈ X} is a faithful family of irreducible represen-
tations of C∗(Γ3 oϑ Z).

In order to get an explicit expression for the Uω, we will need to fix a section from the
quotient group D × Z into Γ3 oϑ Z. That is, we fix a map γ : D × Z→ Γ3 oϑ Z, satisfying
(Q ◦ γ)(L, `) = (L, `) as follows:

Definition 4.9. For (L, `) ∈ D × Z, let

γ(L, l) =

{
([0, L], l) L ∈ D0

([3−l

2
z, L], l) L /∈ D0 ,

where z = v if Γ is either pg or pmg2 and z = u+ v if Γ is either pgg2 or p4mg.

This is legitimate since [3−l

2
z, L] = [0, 3 · id]−l[1

2
z, L][0, 3 · id]l ∈ Γ3.
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Each member of Γ3oϑZ can be uniquely written in the form γ(L, `)
(
[x, id], 0

)
with (L, `) ∈

D × Z and
(
[x, id], 0

)
∈ N3. Indeed, for

(
[y,M ],m

)
∈ Γ3 oϑ Z,(

[y,M ],m
)
] = γ(M,m)

(
γ(M,m)−1

(
[y,M ],m

))
and γ(M,m)−1

(
[y,M ],m

)
∈ N3.

Since Γ3oϑZ is discrete, inducing a one dimensional representation, such as χω, for ω ∈ R2

from N3 up to Γ3 oϑ Z takes a relatively simple form (see Section 2.1 of [15]). Let

H
Uω

= {ξ : Γ3 oϑ Z→ C satisfying (a) and (b)}, where

(a) ξ
(
γ(L, `)

(
[x, id], 0

))
= χω

(
[−x, id], 0

)
ξ
(
γ(L, `)

)
, for all (L, `) ∈ D×Z,

(
[x, id], 0

)
∈ N3.

(b)
∑

(L,`)∈D×Z |ξ
(
γ(L, `)

)
|2 <∞.

We equip H
Uω

with the inner product given by 〈ξ, η〉 =
∑

(L,`)∈D×Z ξ
(
γ(L, `)

)
η
(
γ(L, `)

)
,

for ξ, η ∈ H
Uω

. The induced representation, Uω is realized on H
Uω

. For
(
[x, L], `

)
∈ Γ3 oϑZ,

Uω
(
[x, L], `

)
is the unitary operator on H

Uω
defined by

Uω
(
[x, L], `

)
ξ
(
[y,M ],m

)
= ξ
((

[x, L], `
)−1(

[y,M ],m
))
,

for all
(
[y,M ],m

)
∈ Γ3 oϑ Z, ξ ∈ H

Uω
. It is often useful to work with a representation

that is unitarily equivalent to Uω obtained by noticing that W : `2(D × Z)→ H
Uω

given by
Wf

(
γ(L, `)

(
[x, id], 0

))
= χω(−x)f(L, `), for γ(L, `)

(
[x, id], 0

)
∈ Γ3 oϑ Z, f ∈ `2(D×Z), is a

unitary map of `2(D × Z) onto H
Uω

. Define

σω
(
[x, L], `

)
= W−1Uω

(
[x, L], `

)
W, for all

(
[x, L], `

)
∈ Γ3 oϑ Z.

Although σω depends on the section γ, we suppress its role in the notation. We note that
W−1ξ(L, `) = ξ

(
γ(L, `)

)
, for (L, `) ∈ D × Z, ξ ∈ H

Uω
.

Proposition 4.10. For ω ∈ R2, σω is given by

σω
(
[x, L], `

)
f(M,m) = χω

(
γ(M,m)−1

(
[x, L], `

)
γ(L−1M,m− `)

)
f(L−1M,m− `),

for (M,m) ∈ D × Z, f ∈ `2(D × Z), and
(
[x, L], `

)
∈ Γ3 oϑ Z.

Proof. Fix (M,m) ∈ D × Z and
(
[x, L], `

)
∈ Γ3 oϑ Z. Then(

[x, L], `
)−1

γ(M,m) = γ(L−1M,m− `)
(
γ(L−1M,m− `)−1

(
[x, L], `

)−1
γ(M,m)

)
.

Observe thatQ
(
γ(L−1M,m−`)−1

(
[x, L], `

)−1
γ(M,m)

)
= (L−1M,m−`)−1(L−1,−`)(M,m) =

(id, 0), since Q is a homomorphism of Γ3 oϑ Z onto D × Z. Thus

γ(L−1M,m− `)−1
(
[x, L], `

)−1
γ(M,m) ∈ N3.
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Therefore, for any f ∈ `2(D × Z),

σω
(
[x, L], `

)
f(M,m) = W−1Uω

(
[x, L], `

)
Wf(M,m) = Uω

(
[x, L], `

)
Wf

(
γ(M,m)

)
= Wf(

(
[x, L], `

)−1
γ(M,m)

)
= Wf

(
γ(L−1M,m− `)

(
γ(L−1M,m− `)−1

(
[x, L], `

)−1
γ(M,m)

))
= χω

(
γ(M,m)−1

(
[x, L], `

)
γ(L−1M,m− `)

)
Wf

(
γ(L−1M,m− `)

)
= χω

(
γ(M,m)−1

(
[x, L], `

)
γ(L−1M,m− `)

)
f(L−1M,m− `),

as asserted. �

Using Definition 4.9, and the fact that χω
(
[y, id], 0

)
= e−2πi〈y,ω〉 for

(
[y, id], 0

)
∈ N3, the

formula for σω simplifies as follows:

Corollary 4.11. If Γ is a wallpaper group and ω ∈ R2, then

σω
(
[x, L], `

)
f(M,m) =


e−2πi〈x,3mL−1Mω〉f((L−1M,m− `)) L ∈ D0

e−πi〈z,ω〉e−2πi〈x,3mL−1Mω〉f((L−1M,m− `)) L /∈ D0,M ∈ D0

eπi〈z,ω〉e−2πi〈x,3mL−1Mω〉− 1
2
zf((L−1M,m− `)) L /∈ D0,M /∈ D0

,

for (M,m) ∈ D × Z, f ∈ `2(D × Z), and
(
[x, L], `

)
∈ Γ3 oϑ Z.

Now, suppose that X is a weak 3D-cross-section. Then ∪(L,`)∈D×Z3`LX is dense in R2.
Moreover, distinct points in X lie in distinct D × Z orbits and the orbit of each point in
X is free. In light of Proposition 4.3, {σω : ω ∈ X} consists of inequivalent irreducible
representations of Γ3 oϑ Z and Theorem 4.7 says there are enough of them to be weakly
equivalent to the left regular representation. We now form the direct integral of the σω with
respect to Lebesgue measure of R2 restricted to X. For a comprehensive treatment of the
the theory of direct integrals see [25] or Chapter 14 of [13]. Also, Section 7.4 of [9] provides
details for direct integrals of unitary representations.

Each σω, for ω ∈ X, acts on the same Hilbert space, `2(D × Z). This makes it relatively
easy to describe the Hilbert space of their direct integral with respect to Lebesgue measure
restricted to X. First, we note that a function F : X → `2(D × Z) is called measurable, in
this context, if ω → 〈F (ω), η〉 is Borel measurable on X, for each η ∈ `2(D × Z). Then

L2
(
X, `2(D × Z)

)
=

{
F : X → `2(D × Z)

∣∣F is measurable and

∫
X

‖F (ω)‖2dω <∞
}
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is the Hilbert space we need. By definition, the direct integral representation, denoted∫ ⊕
X
σω dω, acts as follows: For

(
[x, L], `

)
∈ Γ3 oϑ Z and F ∈ L2

(
X, `2(D × Z)

)
,

(5)

[(∫ ⊕
X

σω dω

)(
[x, L], `

)
F

]
(ω′) = σω′

(
[x, L], `

)
F (ω′), for a.e. ω′ ∈ X.

5. A decomposition of the wavelet representation

To decompose the wavelet representation in terms of the family of irreducibles developed

in the previous section, we need to conjugate V̂ by a map that breaks R2 up into a product
X ×D×Z, where X is a weak 3D−cross-section. Because of the extra factor in the induced
representations for group elements involving a glide, this conjugating map will include the
twist c : X ×D 7→ C, defined by

(6) c(ω, L) =

{
e−

πi〈z,ω〉
2 if L ∈ D0

e
πi〈z,ω〉

2 if L /∈ D0
,

where z is the vector identified in Lemma 2.1.

Given a weak 3D−cross-section X, define the map ρ : L2(R2) 7→ L2(X × D × Z,m × ν),
where m is Lebesgue measure restricted to X, and ν is counting measure on the countable
discrete space D × Z, by

[ρ(φ)](ω,M, j) = 3jc(ω,M)φ(3jM(ω)),

for ω ∈ X, j ∈ Z, and M ∈ D. Then ρ is a Hilbert space isomorphism whose inverse is given
by

(7) [ρ−1(f)](ξ) =
∑
k

3−k
∑
M ′∈D

c(−3−kM ′−1ξ,M ′)1(M ′(X))(3
−kξ)[f(3−kM ′−1ξ,M ′, k)],

for ξ ∈ R2 and f ∈ L2(X ×D×Z). If Ṽ is defined by Ṽ
(
[x, L], `

)
= ρ V̂

(
[x, L], `

)
ρ−1, for all(

[x, L], `
)
∈ Γ3 oϑ Z, we get a representation whose detailed action is given in the following

proposition.

Proposition 5.1. For
(
[x, L], `

)
∈ Γ3 oϑ Z and f ∈ L2(X ×D × Z),

[Ṽ
(
[x, L], `

)
(f)](ω,M, j)

=


e−2πi〈x,3jL−1M(ω)〉f(ω, L−1M, j − `) L ∈ D0

e−πi〈z,ω〉e−2πi〈x,3jL−1M(ω)〉f(ω, L−1M, j − `)] L /∈ D0, M ∈ D0

eπi〈z,ω〉e−2πi〈x,3jL−1M(ω)〉f(ω, L−1M, j − `) L /∈ D0, M /∈ D0

,

for a.e. (ω,M, j) ∈ X ×D × Z.
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Proof. We simply compute:

[Ṽ
(
[x, L], `

)
(f)](ω,M, j)

= 3jc(ω,M)[V̂ ([x, L], `)(ρ−1(f))](3jM(ω))

= 3(j−`)c(ω,M)e−2πi〈x,3jL−1M(ω)〉[ρ−1(f)](3j−`L−1M(ω))

= 3(j−`)c(ω,M)e−2πi〈x,3jL−1M(ω)〉3−(j−`)c(−ω, L−1M))f(ω, L−1M, j − `)

=


e−2πi〈x,3jL−1M(ω)〉f(ω, L−1M, j − `) L ∈ D0

e−πi〈z,ω〉e−2πi〈x,3jL−1M(ω)〉f(ω, L−1M, j − `) L /∈ D0, M ∈ D0

eπi〈z,ω〉e−2πi〈x,3jL−1M(ω)〉f(ω, L−1M, j − `) L /∈ D0, M /∈ D0

.

Here the second to last step follows from Equation (7) since the only nonzero summand of
ρ−1(f)(3j−lL−1M(ω)) there is for k = j − ` and M ′ = L−1M . The last step fills in the
definition of c from Equation(6). �

Now we are ready for the main theorem of the paper.

Theorem 5.2. Let Γ be a wallpaper group. The 3Γ-wavelet representation V of Γ3 oϑ Z is
equivalent to a direct integral of irreducible representations induced from characters of the
normal abelian subgroup N3.

Proof. Since Ṽ is equivalent to V , it suffices to show that the representation Ṽ is equivalent
to
∫ ⊕
X
σω dω. We note that the map W : L2

(
X, `2(D × Z)

)
→ L2(X × D × Z) given by

WF (ω, L, `) =
(
F (ω)

)
(L, `), for all (ω, L, `) ∈ X × D × Z and F ∈ L2

(
X, `2(D × Z)

)
, is a

Hilbert space isomorphism, which is easily checked. Using (5) and the explicit formulas in
Corollary 4.11 and Proposition 5.1, one verifies directly that

W

[(∫ ⊕
X

σωdω

)(
[x, L], `

)]
W−1 = Ṽ

(
[x, L], `

)
,

for all
(
[x, L], `

)
∈ Γ3 oϑ Z. This completes the proof. �

We refer to Chapter 6 of [13] for the definition of Type I von Neumann algebras. If G is
a locally compact group and π is a unitary representation of G on a Hilbert space Hπ, then
the von Neumann algebra generated by π is π(G)′′, the double commutant of π(G) inside
B(Hπ). If π(G)′′ is a Type I von Neumann algebra, then π is called a Type I representation.

Proposition 5.3. Let Γ be a wallpaper group. Then the 3Γ-wavelet representation V of
Γ3 oϑ Z is a Type I representation.
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Proof. By Proposition 3.7, V
(
Γ3 oϑ Z

)
= G(A,Γ), where A = 3 · id. By Proposition 2.4,

V
(
Γ3 oϑ Z

)′
is abelian and, thus, a Type I von Neumann algebra. By Theorem 9.1.3 of [13],

its commutant, V
(
Γ3 oϑ Z

)′′
, is also Type I. That is, V is a Type I representation. �

The 3Γ-wavelet representation V is, in some sense, a natural representation of Γ3 oϑ

Z. Another natural representation is the left regular representation. Our final proposition
concerns the relationship between these two representations.

Proposition 5.4. Let Γ be a wallpaper group. Then the 3Γ-wavelet representation V and
the left regular representation of Γ3 oϑ Z are weakly equivalent but not equivalent.

Proof. The proof of Theorem 3.1 in [16] adapts to this situation to show that V is weakly
equivalent to the left regular representation of Γ3 oϑZ. We note that Γ3 oϑZ has no abelian
subgroup of finite index, as is easily verified, so Kaniuth’s stronger version of Thoma’s
Theorem given in [14] shows that the left regular representation of Γ3 oϑ Z is not Type I.
Since V is Type I, they cannot be equivalent. �
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