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Introduction

What Tannaka duality is.

Tannaka duality is a duality between algebraic structures and their
representations.

Tannaka duality consists of reconstruction and representation.

What I do.

Reconstruct a Hopf algebra in Rel from its representations.

Estimate the number of monoidal structures on the category of
automata.

What should be done.

On fundamental theorem.

On representation problem.
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1. Tannaka Duality Theorem
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Referrences on Tannaka dualtiy

Some referrences on Tannaka duality theorem and its generalizations.

A. Joyal and R. Street, An introduction to Tannaka duality and
Quantum groups.

P. McCrudden, Tannaka duality for Maschkean categories.

P. Deligne and J.S. Milne, Tannakian Categories.
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Tannaka duality in Vectk

.

Taking representations

.

.

.

. ..

.

.

Given a coalgebra C in Vectk , one can construct the category Repf (C ) of
finite dimensional representations of C . Denote the forgetful functor by
FC : Repf (C ) → Vectk .

Remark: representations of C = right C -comodules.

.

Converse construction

.

.

.

. ..

. .

Given F : C → Vectk , a functor s.t. F (A) is finite dimensional,
one can construct CF ∈ Vectk , the coalgebra obtained by:

CF =

∫ τ∈C

F (τ)∗ ⊗ F (τ) (1)

Constructively, this is constructed by taking an appropriate quatient space:

CF =

(⊕
τ∈C

F (τ)∗ ⊗ F (τ)

)
/ ∼ (2)
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Tannaka duality in Vectk

.

Fundamental Theorem of Coalgebras

.

.

.

. ..

.

.

A coalgebra in Vectk is the union of its finite dimensional sub-coalgebras.

This is essentially because vectors in C ⊗ C is a finite sum of c1 ⊗ c2.

.

Theorem ( Reconstruction theorem )

.

.

.

. ..

.

.

For an arbitrary coalgebra C ∈ Vectk , if F : C → Vectk is the forgetful
functor FC : Repf (C ) → Vectk , then we have an isomorphism:

C
'−→ CFC

(3)

.

Coend formula

.

.

.

. ..

.

.

A coalgebra can be reconstructed from its finite dimensional
representations:

C =

∫ τ∈Repf (C)

F (τ)∗ ⊗ F (τ)
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Tannaka duality in Vectk

.

Comparison functor

.

.

.

. ..

.

.

There is a canonical functor F̄ : C → Repf (CF ) such that the following
commutes:

C Repf (CF )

Vectk

F
��9

99
99

99
99

FCF
����

��
��

��
�

F̄ //_____ (4)

Remarkably, there is a characterization of fibre functors F : C → Vectk
such that F̄ : C → Repf (CF ) is an equivalence.

.

Theorem (Representation theorem)

.

.

.

. ..

.

.

If C is k-linear abelian and F is exact and faithful, then F̄ is an
equivalence of categories (and vice versa).
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Tannaka duality in Vectk

Main theme of Tannaka duality can be decomposed into the following two
parts:

Reconstruction problem:
to reconstruct an algebraic structure from the category of its
representations.

compact groups [Tannaka, ’39], [Krein, ’49]
locally compact groups [Tatsuuma, ’67]
Hopf algebras [Ulbrich, ’91]
quasi Hopf algebras [Majid, ’92] etc.

Representation problem:
to characterize what category is equivalent to a category of
representations of an algebraic structure.

pro-algebraic groups [Deligne and Milne, ’81] : Tannakian category
compact groups [Doplicher and Roberts, ’89]
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Tannaka duality in Vectk

The following universality of a coalgebra is important:

.

Universality of Coalgebra

.

.

.

. ..

.

.

C =

∫ τ∈Repf (C)

F (τ)∗ ⊗ F (τ)

because this universality shows several correspondences between structures
on Repf (C ) and those on C .
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Tannaka duality in Vectk

Bialgebra structures induce monoidal structures.

.

Multiplication to monoidal structure

.

.

.

. ..

.

.

Given a bialgebra structure (µ, η) on a coalgebra C ∈ Vectk ,
one can construct a monoidal structure (⊗µ, Iη) on Repf (C ),
s.t. the forgetful functor FC : Repf (C ) → Vectk is monoidal.

Conversely, we have the inverse construction due to the universality of
coalgebras.

.

Monoidal structure to multiplication

.

.

.

. ..

.

.

Given a functor F : C → Vectk and a monoidal structure (⊗, I ) on C s.t.
F is monoidal, one can construct a bialgebra structure (µ⊗, ηI ) on CF .

Remark : We mean strong monoidal by “monoidal”.
Remark : The non-strong case is also studied in, e.g., [Majid, ’92].
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Tannaka duality in Vectk

Antipodes induce left dual objects.

.

Antipode to duals

.

.

.

. ..

.

.

If a bialgebra B ∈ Vectk has its antipode S : B → B, then the monoidal
category Repf (B) has left dual objects.

The converse is also true.

.

Dual to antipode

.

.

.

. ..

.

.

Given a monoidal functor F : C → Vectk s.t. C has left dual objects, then
the bialgebra CF is a Hopf algebra.

.

Especially..

.

.

.

. ..

.

.

The monoidal category Repf (B) has left dual objects if and only if B is a
Hopf algebra.
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Some generalizations of Tannaka duality theorem

There are known several directions to generalize Tannaka duality theorem
and its analogues.

Tannakian categories [P. Deligne and J. Milne, ’82]

Tannaka duality for Maschkean categories [P. McCrudden, ’02]

Enriched Tannaka reconstruction [B. Day, ’96]
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2. Discrete Analogue of Tannaka Duality

Takeo Uramoto (Kyoto univ.) On Tannaka Dualities 14 June, 2012 13 / 34



. . . . . .

Tannaka duality in Rel

This study is originaly aimed at solving the following classification problem.

.

Original Problem

.

.

.

. ..

.

.

How many monoidal structures can exist on the category Aut(Σ) of
automata and simulations?

Are there infinitely many monoidal structures?

Can we give a good classification of them?

The motivation comes from the following recent approach to concurrency
theory based on categorical framework of state-based systems.

.

Motivation

.

.

.

. ..

.

.

“The microcosm principle and concurrency in coalgebra” [Jacobs et al, ’08]

Understand several existing constructions on state-based systems as
categorical operations on particular category of universal coalgebra.
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Tannaka duality in Rel: Reconstruction problem

Given a Hopf algebra H ∈ Rel, we have following universality of H.

.

(Almost trivial) Universality of H

.

.

.

. ..

.

.

H =

∫ τ∈Rep(H)

F (τ)∗ ⊗ F (τ) (5)

But this expression is not satisfactory because Rel is neither complete nor
cocomplete. In fact:

.

Lack of (co-) equalizers

.

.

.

. ..

.

.

X = {•, •} ∈ Rel and consider the following relation f : X → X :

• •

• •

//

��?
??

??
??

//

Then there is no equalizer for f and the identity idX : X → X .
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Reconstruction problem

.

Tannaka duality theorem (Reconstruction of compact groups)

.

.

.

. ..

.

.

G : compact group, Repf (G , C): category of fin. dim. rep. of G .
F : Repf (G , C) → Vectk= the forgetful functor. Let T (G ) ⊆ End(F ) be
a subset of natural trasformations F ⇒ F satisfying:

U(τ ⊗ ρ) = U(τ) ⊗ U(ρ)

U(I ) = idI

Ū = U

Then T (G ) forms a topological group and is canonically isomorphic to G .

Similar construction is known also for pro-algebraic groups [Deligne-Milne].

.

Reconstruction via natural transformations

.

.

.

. ..

.

.

Can we reconstruct H ∈ Rel by using some class of natural
transformations FH ⇒ FH on the forgetful functor FH : Rep(H) → Rel?
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Reconstruction problem

C: arbitrary monoidal category with left dual objects.
F : C → Rel: a (strict) monoidal functor.

.

Poset structure on End(F )

.

.

.

. ..

.

.

Given U, V : F ⇒ F , we denote by U ≤ V if for each τ ∈ C,

U(τ) ⊆ V (τ)

Remark : End(F ) 3 U : F ⇒ F consists of U(τ) ⊆ F (τ) × F (τ).

.

Conjugate operator on End(F )

.

.

.

. ..

.

.

Given U ∈ End(F ), the conjugate Ū : F ⇒ F is defined: for each τ ∈ C,
the component on τ is given by,

Ū(τ) = (U(τ∗))∗

Remark : The internal ∗ is dual in C, and the external ∗ is dual in Rel.
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Given U ∈ End(F ), the conjugate Ū : F ⇒ F is defined: for each τ ∈ C,
the component on τ is given by,
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Reconstruction problem

Especially, there is the minimal element 0 : F ⇒ F whose components are
empty sets 0(τ) = ∅ ⊆ F (τ) × F (τ).

.

Atoms in End(F )

.

.

.

. ..

.

.

A natural transformation U : F ⇒ F is called an atom if for every V ,
V ≤ U implies that V is equal to either 0 or U.

Denote by HF ⊆ End(F ) the set of all atoms in End(F ).

.

Some relations on HF

.

.

.

. ..

.

.

HF × (HF × HF ) ⊇ ∆F = {(U, (V , W )) | U ≤ W ◦ V }
(HF × HF ) × HF ⊇ µF = {((U, V ),W ) | U ⊗ V ≤ W }

HF × I ⊇ εF = {(U, ∗) | U ≤ idF}
I × HF ⊇ ηF = {(∗, U) | ∀V , W . V ⊗ U ≤ W ⇒ V ≤ W }

HF × HF ⊇ SF = {(U, V ) | U ≤ V̄ }
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Reconstruction problem

This structure gives a reconstruction of Hopf algebras in Rel.

.

Theorem (Reconstruction theorem)

.

.

.

. ..

.

.

If F : C → Rel is FH : Rep(H) → Rel for some H ∈ Rel, then there is a
canonical isomorphism of Hopf algebras:

H ' HFH

We describe a sketch of the proof.

.

Notation

.

.

.

. ..

.

.

Let H be a Hopf algebra in Rel and τ = (X → X ⊗ H) ∈ Rep(H).

x
a−→ x ′ ⇔ (x , (x ′, a)) ∈ τ

Remark : τ ⊆ X × (X × H).
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Sketch of the proof.

.

Lemma. 1 (Comultiplication)

.

.

.

. ..

.

.

For every a, b, c ∈ H, we have:

(a, (b, c)) ∈ ∆ ⇔

{
∀τ = (X → X ⊗ H) ∈ Rep(H),

x
a−→ x ′ ⇒ ∃x ′′. x

b−→ x ′′ c−→ x ′

Remark :∆ ⊆ H × (H × H).

.

Lemma. 2 (Multiplication)

.

.

.

. ..

.

.

For every a, b, c ∈ H, we have:

((a, b), c) ∈ µ ⇐⇒


∀τ = (X → X ⊗ H), ∀ρ = (Y → Y ⊗ H) ∈ Rep(H),

x
a−→ x ′ in τ ∧ y

b−→ y ′ in ρ

⇒ x ⊗ y
c−→ x ′ ⊗ y ′ in τ ⊗ ρ

Remark : The underlying set of τ ⊗ ρ is given by X × Y = X ⊗ Y . We
denote (x , y) ∈ X ⊗ Y by x ⊗ y .
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Sketch of the proof

.

Lemma. 3 (Antipode)

.

.

.

. ..

.

.

For every a, b ∈ H, we have:

(a, b) ∈ S ⇐⇒

{
∀τ = (X → X ⊗ H) ∈ Rep(H),

x
a−→ x ′ in τ ⇒ x ′ b−→ x in τ∗

Remark : The underlying set of τ∗ is also X (= X ∗) for τ = (X → X ⊗H).

We restate these lemmas in terms of natural transformations. To do so,
we need the following notation.

.

Notation

.

.

.

. ..

.

.

For a ∈ H, a natural transformation Ua : F ⇒ F is defined: for each
τ = (X → X ⊗ H), the component Ua(τ) ⊆ X × X is given by,

Ua(τ) = {(x , x ′) | x
a−→ x ′ in τ}
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. . . . . .

Sketch of the proof

.

Proposition. 1 (Comultiplication)

.

.

.

. ..

.

.

For every a, b, c ∈ H, we have:

(a, (b, c)) ∈ ∆ ⇐⇒ Ua ≤ Uc ◦ Ub

.

Proposition. 2 (Multiplication)

.

.

.

. ..

. .

For every a, b, c ∈ H:

((a, b), c) ∈ µ ⇐⇒ Ua ⊗ Ub ≤ Uc

.

Proposition. 3 (Antipode)

.

.

.

. ..

.

.

For every a, b ∈ H:
(a, b) ∈ S ⇐⇒ Ua ≤ Ūb

Takeo Uramoto (Kyoto univ.) On Tannaka Dualities 14 June, 2012 22 / 34



. . . . . .

Sketch of the proof

.

Proposition. 1 (Comultiplication)

.

.

.

. ..

.

.

For every a, b, c ∈ H, we have:

(a, (b, c)) ∈ ∆ ⇐⇒ Ua ≤ Uc ◦ Ub

.

Proposition. 2 (Multiplication)

.

.

.

. ..

. .

For every a, b, c ∈ H:

((a, b), c) ∈ µ ⇐⇒ Ua ⊗ Ub ≤ Uc

.

Proposition. 3 (Antipode)

.

.

.

. ..

.

.

For every a, b ∈ H:
(a, b) ∈ S ⇐⇒ Ua ≤ Ūb
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. . . . . .

Sketch of the proof

.

In the case of compact group G .. [Joyal-Street]

.

.

.

. ..

.

.

A natural transformation U : F ⇒ F on F : Repf (G , C) → Vectk is of the
form π(x) for some x ∈ G if and only if U is self-conjugate and
tensor-preserving.

The notion of atoms characterizes Ua.

.

Proposition. 4

.

.

.

. ..

. .

A natural transformation U : FH ⇒ FH on FH : Rep(H) → Rel is of the
form Ua for some a ∈ H if and only if U is an atom in End(FH).

Thus now we can describe the canonical isomorphism from H to HFH
:

.

Canonical isomorphism

.

.

.

. ..

.

.

The canonical isomorphism is explicitly given by the following
correspondence:

U• : H 3 a 7→ Ua ∈ HFH
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. . . . . .

How to use this construction

.

Example (canonical embedding Sets → Rel)

.

.

.

. ..

.

.

Let F0 : Sets → Rel be the canonical embedding, then the poset End(F0)
is isomorphic to the poset represented by the following Hasse diagram:

©
©

idF0

0

Thus HF0 is a singleton {idF0}.
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. . . . . .

Some consequences for original problem

We do not forget the original problem.

.

Original problem

.

.

.

. ..

.

.

How many monoidal structures can exist on Aut(Σ)? Are they finite or
infinite? Can we give a good classification of them?

.

Rough description of Aut(Σ)

.

.

.

. ..

. .

Objects:
© ©

©

a
77

b
ee

a,b

��
© ©

© ©

a,b

88
b

VV

a,b
ww

a
�� b ��?

??
??

... non-deterministic automata.

Arrows: (Backward-forward) simulations.
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. . . . . .

Some consequences for original problem

.

Typical monoidal structures on Aut(Σ)

.

.

.

. ..

.

.

CCS-like parallel composition of automata.

CSP-like parallel composition of automata.

Interleaving composition of automata.

There is a functor F : Aut(Σ) → Rel that sends an automaton to its
state-set, and a simulation to itself. These typical monoidal structures
make F : Aut(Σ) → Rel strict monoidal.

.

Restricted classification problem

.

.

.

. ..

.

.

Classify monoidal structures on Aut(Σ) such that F : Aut(Σ) → Rel is
strict monoidal.

Remark : In what follows, “monoidal structure” means such monoidal
structures.
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. . . . . .

Some consequences for original problem

.

Classification of monoidal structures

.

.

.

. ..

.

.

There is a bijective correspoindence between monoidal structures on
Aut(Σ) and bialgebra structures on the coalgebra Σ∗ consisting of finite
words.

.

Example (Interleaving v.s. word shuffling)

.

.

.

. ..

.

.

The interleaving composition on Aut(Σ) is in correspondence with the
shuffling operation on finite words under the above bijective
correspondence.

.

Corollary: Aut(Σ) has only finitely many monoidal structures.

.

.

.

. ..

.

.

If the set Σ consists of n members, then the number M(n) of monoidal
structures on Aut(Σ) is finite: there is a rough estimation,

n! ≤ M(n) ≤ 2n3+n.
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. . . . . .

Some consequences for original problem

One can prove the following fact by combinatorial argument on finite
words.

.

Lemma: Σ∗ can not be a Hopf algebra in Rel.

.

.

.

. ..

.

.

The coalgebra Σ∗ can not be a Hopf algebra with respect to any bialgebra
structure on it.

This fact is translated to a fact about Aut(Σ) via Tannaka dualtiy.

.

Corollary: Aut(Σ) cannot be autonomous.

.

.

.

. ..

.

.

More strongly: for any monoidal structure on Aut(Σ), there exists an
automaton that does not have its left dual.
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. . . . . .

Some consequences for original problem

.

Automata are representations of finite words.

.

.

.

. ..

.

.

For F : Aut(Σ) → Rel, we have an equivalence: Aut(Σ) ' Rep(HF ):

HF = Σ∗: the set of finite words.

∆F = {(u, (v ,w)) | u = v · w} ⊆ HF × (HF × HF )

.

Example: Automata with permutable paths

.

.

.

. ..

.

.

C ⊆ Aut(Σ): the full subcategory consisting of automata such that for
each σ ∈ Sn,

◦
◦ ◦ ◦

◦
◦ ◦ ◦

a1 ::ttt

a2 // an
$$JJJ

aσ(1)
$$
aσ(2)

// aσ(n)

::

For the restriction F : C → Rel, we have an equivalence C ' Rep(HF ).

HF : the set of multisets

∆F = {(p, (q, r)) | p = q + r} ⊆ HF × (HF × HF )
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4. Some Conjectures
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Some Conjectures

.

Observation

.

.

.

. ..

.

.

In the reconstruction procedure of H ∈ Rel, the poset structure of End(F )
plays a key role...why?

.

Observation

.

.

.

. ..

.

.

For F : C → Rel, the coend exists if and only if the associated poset
End(F ) is freely generated by its atoms.

.

Observation

.

.

.

. ..

.

.

Rel can be embedded into the category SLat

⊗ on Rel can be extended to ⊗ on SLat.

SLat is complete and cocomplete.
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. . . . . .

Some Conjectures

.

Lesson from these observation

.

.

.

. ..

.

.

The place we should work in is not Rel, but SLat (or something like that).

.

Correspondence

.

.

.

. ..

.

.

The category Vectfk of finite dimensional spaces is repraced by Rel.

The category Vectk is replaced by SLat.

.

Conjecture: Fundamental theorem in SLat

.

.

.

. ..

.

.

For a coalgebra C ∈ SLat:

C =

∫ τ∈Repf (C)

F (τ)∗ ⊗ F (τ)

where Repf (C ) consists of representations of C whose underlying set is in
Rel, and F : Repf (C ) → SLat denotes the forgetful functor.
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. . . . . .

Some Conjectures

.

Significant point of Tannaka duality

.

.

.

. ..

.

.

Starting from a category C which seemingly has nothing to do with
coalgebras, one can prove an equivalence of C and the category Repf (C )
of some coalgebra C .

.

Conjecture (hope)

.

.

.

. ..

.

.

There is a category Game of some kind of games and a functor
F : Game → SLat with F (τ) in Rel, such that Game ' Repf (CF ).
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. . . . . .

Thank you!
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